
DevOps Dashboard with Heatmap
Márk Török, Norbert Pataki

{tmark, patakino}@caesar.elte.hu

Department of Programming Languages and Compilers
Eötvös Loránd University, Faculty of Informatics

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

Introduction

DevOps is an emerging approach that aims at the symbiosis of
development, quality assurance and operations. Developers need
feedback from the test executions that Continuous Integration (CI)
servers support [3]. On the other hand, developers need feedback
from deployed application that is in production.

The following figure presents the dashboard of the Jenkins CI:

CI provides feedback to the developers whether the code is in proper
state [5]:

We have created a DevOps dashboard tool that visualizes how the
deployed applications behave in production. In this poster, we
present our Dashboard tool with a new extension. This extension
is a heatmap that presents the features’ usage. DevOps tool provides
result from the end-users, so it can be seen if a new feature is un-
used or an old one needs more capacity because too many users take
advantage of it.

DevOps

DevOps is an emerging approach in modern software engineering.
The key achievements of DevOps are comprehensive processes from
building source to deployment, continuous synchronization of devel-
opment and operations in order to make every new feature delivered
to the end users. DevOps emphasizes the feedback from every phase.

Continuous Delivery (CD) is a software development discipline.
This discipline aims at building software in such a way that the soft-
ware can be released to production at any time [4]. It is a series of
processes that aims at the safe and rapid deployment to the produc-
tion. Every change is being delivered to a production-like environ-
ment called a staging environment [7]. Rigorous automated testing
ensures that the business applications and service work as expected
[6].

The DevOps approach extends the CD discipline and focuses on
comprehensive CD pipelines: starting with building, followed by
different kinds of comprehensive testing. After the comprehensive
QA phase, the automatic deployment of application starts. The De-
vOps culture argues for the deployment automation at the level of
the application. The automatic upgrade and roll-back processes in-
volve many difficult challenges. This approach requires automation
and visibility.

DevOps considers the monitoring and logging of the deployed ap-
plication in the production environment [7]. The development team
is eager for feedback from the application which is in the production
environment. The feedback may include many aspects of the soft-
ware: for instance, unused features in the software, memory or other
resource leak detection or performance bottlenecks. Problems may
cause automatic roll-back of the application to the previous stable
version.

DevOps toolset

DevOps engineers take advantage of many different tools for differ-
ent purposes:

DevOps engineers need

• Version Control System – to store the source code

• Build systems – for building and packaging

• Continuous Integration/Continuous Delivery – to detect integra-
tion problems

• Testing frameworks – for executing test cases, creating reports

• Infrastructure and Delivery – how we start the entire application
(starting virtual machines, containers from images) [2].

• Configuration Management tool – for automatized configuration
steps

• Monitoring and Logging tools – for status of application

However, tools landscape is missing good tools which are able to
present the runtime performance of applications in staging or pro-
duction environment regarding the changes of the source code. We
are working on a dashboard tool to visualize how the deployed ap-
plication behaves in specific environment. Many typical use-cases
can be mentioned. Does the memory consumption decrease when
a feature’s new implementation is deployed? Which commit may
cause a memory leak, if it is suspicious. Does the introduction of a
new feature or API cause increase in the number of end-users? How
can one compare the performance of the system if the webserver or
a database server is replaced?

Our Dashboard

A safe software development requires control over the entire soft-
ware development lifecycle (SDLC). During the development, it is
essential to avoid memory leakage, or overuse of the CPUs. To get
a good overview of the resource utilization engineers, DevOps engi-
neers have to keep their eyes on these units that means they have to
monitor their environments by using tools that can reflect the status
of the different services, databases, network I/Os, or the amount of
written/read blocks [8]

Monitoring these changes can provide a closer picture about how the
application works in the different environments and provide feed-
back about the changes that have been applied. This approach re-
flects whether the new features, bug fixes, optimizations can bring
better performance on the specified resources. Monitoring an en-
vironment or a service inside an environment requires such an in-
terface to gain information about them. In our approach, we took
advantage of agents to observe the changes. These agents are lo-
cated on machines that play the role of the hosts of the environ-
ments. Every single agent is reliable for watching only one service
per environment and to hand over the logged data to the Dashboard
application. Many agent examples are presented in [8].

Our dashboard can be seen on the hereinafter figure:

One can see the deployment history, as well:

Heatmap

A heatmap is a graphical representation of data that uses a system
of color-coding to represent different values. Heatmaps are used in
various forms f analytics but are most commonly used to show user
behaviour on specific webpages or webpage templates [1].

We have developed a logging and monitoring solution that takes ad-
vantage of the special logs of back-end functionalities. We do not
deal with the front-end, we retrieve what are the endpoints that end-
users call via the front-end. Our agents inform the tool about usage
information.

The main questions are:

• How has a new feature increased the number of users since its
introduction (or release)?

• Should we advertise an unused new feature?

• Should we cease an unused feature and its maintenance?

Conclusion

DevOps is an emerging approach for the symbiosis of development,
quality assurance and operations. According to DevOps, feedback
is required from any aspect of the development and operation, there-
fore many tool are applied by the engineers.

We have created a DevOps dashboard that returns feedback from
the production. This tool is connected to the CI, so it can support
many different versions from the software. Engineers can analyse
how the new features behave. We add a new heatmap functionality
based on the backend’s log. Managers can take advantage of usage
information.

References

[1] Richard Atterer, Philip Lorenzi: A heatmap-based visualization
for navigation within large web pages, in Proc. of the 5th Nordic
Conference on Human-computer Interaction: Building Bridges, pp.
407–410.

[2] David Bernstein: Containers and cloud: From LXC to Docker to
Kubernetes, IEEE Cloud Computing 1(3), 81–84 (Sept 2014)

[3] Daniel Cukier: DevOps patterns to scale web applications us-
ing cloud services, in Proc. of the 2013 Companion Publication for
Conference on Systems, Programming, & Applications: Software
for Humanity (SPLASH’13), pp. 143–152.

[4] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Elo-
ranta, Juha Itkonen, Mika V. Mäntylä, Tomi Männistö: The high-
ways and country roads to continuous deployment, IEEE Software
32(2), 64–72 (Mar 2015).

[5] Ádám Révész, Norbert Pataki: Integration Heaven of Nanoser-
vices, in Proc. of the 21th International Multi-Conference INFOR-
MATION SOCIETY IS’2018, Volume G : Collaboration, Software
and Services in Information Society, pp. 43–46.

[6] James Roche: Adopting DevOps practices in quality assurance,
Commun. ACM 56(11), 38–43 (Nov 2013).

[7] Andreas Schaefer, Marc Reichenbach, Dietmar Fey: Continuous
integration and automation for DevOps, IAENG Transactions on En-
gineering Technologies: Special Edition of the World Congress on
Engineering and Computer Science 2011, pp. 345–358.

[8] Márk Török, Norbert Pataki: Service Monitoring Agents for De-
vOps Dashboard Tool, in Proc. of the 21th International Multi-
Conference INFORMATION SOCIETY IS’2018, Volume G : Col-
laboration, Software and Services in Information Society, pp. 47–50.


