
Stanford LCF∗

Gergely Budaya

aEszterházy Károly University
Gyöngyös

buday.gergely@uni-eszterhazy.hu

Abstract

In this paper I describe Stanford LCF and its historical significance. It is
based on Dana Scott’s Logic of Computable Functions. It is one of the earliest
theorem prover exhibiting ideas that are prevalent since in the family of LCF-
style provers. Its descendants Edinburgh LCF, Cambridge LCF, the HOL
family of theorem provers and Isabelle/HOL are all important developments
in theorem proving history. It was created almost fifty years ago so it is time
to give an account on it.

Keywords: functional programming, theorem proving, contemporary history

MSC: 68N18, 68T15, 01A65

Introduction

Fifty years ago, Dana Scott wrote a paper on a model of the lambda-calculus
that remained unpublished until 1993 [8] — the cause for not publishing it was a
remark in the paper on the type-free lambda calculus not having a model but soon
Scott found a model for it. Based on this work, Robin Milner wrote a machine
implementation of it [6].

The logic

Scott gave his LCF as logic of typed combinators which Milner translated into the
typed λ-calculus [5]. He wrotes that λ-calculus is an easier formalism to use but
its metatheory is complicated because of bound variables — this is still an active
research area in programming language formalisation [7] [10] [1] [4].

∗This work was supported by the ”Complex Development of Research Capacities at the
Eszterházy Károly University” EFOP-3.6.1-16-2016-00001 project.

1

mailto:buday.gergely@uni-eszterhazy.hu


The implementation

Milner wrote a user’s manual for Stanford LCF, a proof-checking program as he
defines it [6]. He expressed gratitude to John McCarthy for encouraging me to
undertake this work. This happened in 1972, and as early as that he envisioned his
system to generate formal proofs about not only integers and lists but about com-
puter programs and their semantics. Already appear in the system two components
that are present in today’s LCF-style theorem provers: the subgoaling facility and
the simplification mechanism.

The logic LCF is presented using the typed λ-calculus, not the typed combina-
tors S and K as Scott originally expressed it. Milner uses an axiomatization for
integers by Scott and introduces a partial axiomatization for lists. Besides these,
he writes that LCF is expressive enough to prove e.g. the equivalence of recursion
equation schemata without introducing non-logical axioms.

The language implemented
The basic types are tr and ind, the type of truth values and of individuals, the
latter is still used in HOL4 [3] and it originates from [2]. Terms can be

• identifiers — alphanumeric strings

• applications s(t), where s : β1 → β2 and t : β1

• conditionals (s→ t1, t2) : β, where s : tr and t1, t2 : β

• λ-expressions [λx.s] : β1 → β2, where x : β1 and s : β2

• α-expressions [αx.s] : β, where x, s : β

For identifiers, the document writes "we assume that the type of each identifier
is uniquely determined in some manner". More to that, later "note that in the
machine implementation there is no type-checking whatsoever, we rely on the user
to use types consistently" is added. [αx.s] : β is the least (minimal in the original
text) fixed point of the function [λf.s] as follows:

[αf.[λx.(p(x)→ f(a(x)), b(x))]]

creates the least fixed point for the following function definition:

f(x) = if p(x) then f(a(x)) else b(x)

TT and FF are true and false, while UU is the totally undefined object of any
type.

An atomic well-formed formula is s ⊂ t, where s and t have the same type.
Its meaning is that t is as well defined as s and is consistent with s. Lists of
atomic well-formed formulae form well-formed formulae, and they are meant as the

2



conjunction of their element atomic well-formed formulae. At the end, sentences
are implications of well-formed formulae: P ` Q.

A proof is a series of sentences, where each is derived from previous sentences
by an inference rule.

Inference rules
In the following rules, P (s/x) is the substitution of s into all free occurrences of x
in P , using α-conversion in P to avoid free variable caption.

Derivability rules: `

INCL (Q is a subset of P)
P ` Q

P ` Q1 P ` Q2CONJ
P ` Q1 ∪Q2

P1 ` P2 P2 ` P3CUT
P1 ` P3

Rules for better defined terms: ⊂

APPL
s1 ⊂ s2 ` t(s1) ⊂ t(s2)

REFL
P ` s ⊂ s

P ` s1 ⊂ s2 P ` s2 ⊂ s3TRANS
P ` s1 ⊂ s3

UU rules

MIN1 ` UU ⊂ s

MIN2 ` UU(s) ⊂ UU

Conditional rules

CONDT ` TT → s, t ≡ s

CONDU ` UU → s, t ≡ UU

CONDF ` FF → s, t ≡ t

3



λ rules

P ` s ⊂ tABSTR x is not free in P
P ` [λx.s] ⊂ [λx.t]

CONV ` [λx.s](t) ≡ s(t/x)

ETACONV x and y are distinct
` [λx.y(x)] ≡ y

Truth rule

P, s ≡ TT ` Q P, s ≡ UU ` Q P, s ≡ FF ` Q
CASES

P ` Q

Fixed point α rules

FIXP ` [αx.s] ≡ s([αx.s]/x)

P ` Q(UU/x) P,Q ` Q(t/x)
INDUCT x is not free in P

P ` Q([αx.t]/x)

Commands
There are four groups of commands in Stanford LCF:

• rules of inference

• goal oriented commands to state and process goals and subgoals

• system commands for displaying and handling proofs

• defining axioms and theorems and to recall and instantiate them

The SIMPSET command allows to add or remove simplification rules from the
simplification set, still present in current LCF-style theorem provers. SHOW does
what its name suggests: shows subgoals, steps in Stanford LCF parlance. FETCH
gets axioms and theorems from files. The system description says ”much of the user
types is dependent on the stepnumbers that the system is generating, so the use of
files prepared offline is limited”. There is the INFIX command making an identifier
used as infix, showing that already in Stanford LCF the developers thought of
making the syntax close to the mathematical practice, aiming user-friendliness.
With LABEL one could avoid the use of stepnumbers.

With the AXIOM command one can define axioms. The THEOREM command
allows the user to define theorems and optionally to name the axioms it depends on.
Mathematically this is an interesting feature as the searching of what axioms are
needed to prove a theorem is now a research field of its own [9]. The system checked

4



whether the axioms mentioned are present in the proof. The USE command also
checks the axioms of a theorem whether they are available and treats the theorem
as a meta-theorem where its free variables are to be instantiated, another useful
concept already introduced in Stanford LCF and present in modern LCF-style
theorem provers.

Tactics
Tactics, which are available in today’s HOL4 theorem prover already appear in
Stanford LCF. E.g. CONJ breaks down a well-formed formula into its constituents
— remember, a wff is a conjunction of its element atomic wffs. CASES does
the backward step of the CASES rule: for a term s and wff P the system gen-
erates the three subgoals P SASSUME s ≡ TT , P SASSUME s ≡ UU and
P SASSUME s ≡ FF .

SIMPL does simplification generating a new subgoal. SUBST substitutes the
right hand side of a subgoal for the left hand side of another one. INDUCT applies
the similarly named rule backwards: if the subgoal is a recursive definition s ≡
[αy.t] then it creates two subgoals P (UU/s) and P (t(y′/y)/s) ASSUME P (y′/s)
where

Simplification
Some more detail about simplification as it is interesting historically. The system
description reminds the user not to introduce simplification rules that results in an
infinite rewriting. Allowing the use of assumptions as simplification rules is already
present. Recursive definitions are handled smartly: although such a definition could
lead to an indefinite expansion, with the use of other members of the simplification
set termination can be achieved.

References

[1] Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McK-
inna. A type and scope safe universe of syntaxes with binding: Their semantics and
proofs. Proc. ACM Program. Lang., 2(ICFP):90:1–90:30, July 2018.

[2] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–
68, 1940.

[3] HOL Developers. The HOL System DESCRIPTION. Technical report, June 2018.

[4] Lorenzo Gheri and Andrei Popescu. A formalized general theory of syntax with
bindings: Extended version. Journal of Automated Reasoning, Apr 2019.

[5] Robin Milner. Implementation and applications of scott’s logic for computable func-
tions. In Proceedings of ACM Conference on Proving Assertions About Programs,
pages 1–6, New York, NY, USA, 1972. ACM.

[6] Robin Milner. Logic for Computable Functions: Description of a Machine Imple-
mentation. Technical report, Stanford, CA, USA, 1972.

5



[7] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2013.

[8] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science, 121(1):411 – 440, 1993.

[9] J. Stillwell. Reverse Mathematics: Proofs from the Inside Out. Princeton University
Press, 2019.

[10] Christian Urban and Cezary Kaliszyk. General Bindings and Alpha-Equivalence in
Nominal Isabelle. Logical Methods in Computer Science, 8(2:14), 2012.

6


