
Towards decoupling nullability semantics
from indirect access in pointer use ∗

Richárd Szalaya

aEötvös Loránd University, Faculty of Informatics,
Department of Programming Languages and Compilers,
Pázmány Péter stny. 1/C., 1117 Budapest, Hungary,

szalayrichard@inf.elte.hu

Abstract
The special “null-pointer” (C, C++, Ada) or “null-reference” (Java, C#,

Python, . . . ) value for a pointer-like type is often used to indicate the lack
of a meaningful result/data. Accessing a non-existing value is an undefined
operation, resulting in either unpredictable behaviour of the program or the
raising of an exception. The usage of pointers often leads to a defensive
design: it is expected of the programmer to preemptively guard against the
nullness of a pointer, or handle the resulting exception. Together with a code
organisation principle to prefer “early returns”, this defensive mechanism may
result in variables in the local scope polluting the list of available symbols.
These variables’ existence do not pose a performance overhead at run-time as
virtually all compilers optimise the variable away by caching the loaded value.
However, during code comprehension, these symbols remain visible, suggested
by code completion tools which hinder understanding. Some programming
languages offer “conditional dereference” operations: in C#, the ?. operator
propagates a null reference; in Haskell, the Maybe monad allows expressing
such semantics. Modern C++ versions support expressing Maybe-like values
with the optional<T> class template, but it encapsulates the values, not
the indirect access. Adaptation of new language features or changing user-
facing API is often met with business or technical challenges and is thus
a slow process. In this paper, we discuss our investigation of the usage of
pointer-like types (including iterators) for nullability semantics, not only for
indirect access. We devised an automated analysis tool that marks potentially
redundant pointer variables, lowering the number of visible local symbols. A
post-refactoring view can show the landscape of the program where descent
in complex data structures (such as configuration maps) can be expressed in
a more concise manner.

Keywords: C++ programming language, encapsulation, memory model,
pointers, software design

∗This work presented in this paper was supported by the European Union, co-financed by the
European Social Fund in project EFOP-3.6.3-VEKOP-16-2017-00002.

1


