
Format-independent Graph Vizualization
with Language Server Protocol

Attila Gyén, Norbert Pataki
gyenattila@gmail.com, patakino@.elte.hu

Department of Programming Languages and Compilers
Eötvös Loránd University, Faculty of Informatics

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

Introduction

Nowadays, software lifecycles can last for years or even decades,
which can lead to a number maintenance and development issues.
As a software size increases, more and more developers are involved
in projects [7]. Code-support tools like CodeCompass make it easier
for newcomers to join projects more efficiently. To use this tool
effectively, it needs to be integrated into each developer tool, IDEs
[1].

The Language Server Protocol (LSP) is a tool based on the client-
server mechanism, in which the client – the development environ-
ment – can send requests to the server, which can display in the
development environment – typically textual – information received
in response to that programming language [3].

Graphs are common data structures that can be used during software
development. Control-flow graphs, many UML diagrams (e.g. class
diagram) are graphs. LSP currently does not support them com-
prehensively [4]. In this paper, we present our approach for graph
vizualization in IDEs. The graphs are queried based on the source
code. Different IDEs support different formats, therefore we define
a construct for IDE-independency. We also present how menus and
submenus can be defined with LSP.

Tools - CodeCompass

CodeCompass is an open source LLVM/Clang code comprehension
tool, developed by Ericsson Ltd. in co-operation with Eötvös Loránd
University to help developers to understand large software systems
more easily and faster [6].

• User friendly web UI

• Fast navigation among source code elements

• Several languages supported

Tools - Visual Studio Code

Visual Studio Code is open source editor developed by Microsoft. It
supports many languages, operating systems and platforms [2].

Graphs in Software Engineering

Graphs are very common data structure in software engineering.
Graphs can be comprehended in a graphical way. Some examples:

root

function execute

gcd

parameter declaration body

x y while return

! if else

==

x y

> = else

x y x -

x y

=

y -

y x

x

declaration main

a b I/O I/O I/O

>>

a

>>

b

<<

function_call

gcd input parameters

b a

On the other hand, many graphical format should be supported be-
cause different IDEs may display different format of images:

• Scalable Vector Graphics (SVG)

• Joint Photographic Experts Group (JPEG)

• Portable Network Graphics (PNG)

• PostScript (ps)

• Portable Document Format (pdf)

• etc.

Our approach

The Language Server Protocol (LSP) is an open, remote procedure
call protocol that commuciates between the editors/IDEs and servers
that provide programming language-specific features [5]. The goal
of the protocol is to allow programming language support to be im-
plemented and distributed independently of any given editor or IDE.
We use this protocol for a format-independent graph vizualization.

VSCode CodeCompass

Model / 
Database

User

CodeCompass 
LspHandler

CodeCompass 
LspService

VSCode extension 
Language Server

VSCode extension 
Language Client

1. Diagram kérés küldése

2. LSP kérés

3. Metódus hívás

4. Adat gyűjtés

5. LSP válasz6. SVG7. Diagram megjelenítése

Request for diagram

LSP request

Method call

Data collection

LSP responseSVGVizualized diagram

Because the higher-level Language Server Protocol requests cannot
communicate directly with lower-level CodeCompass functions, it
was necessary to create a wrapper that can combine existing func-
tionality for LSP. This packaging service is called LspService.

By default, the LSP does not include that feature which allows one
to create a context menu at any point in the document, which one can
select from among the executable commands. However, the protocol
provides support for executing pre-recorded commands. Although
we can insert these at a specific point in the document, this point
must be fixed in advance.

Each of the IDE that support LSP has a context menu, but they
are not freely expendable. The predefined functions are automat-
ically displayed when they are implemented. However, with a
little trick, protocol development – without making any changes
to the original implementation - can be achieved by using an in-
correct code autocompletion. This allows us to create a con-
text menu, the content of which can also depend on the position
of the current document. This can be achieved by using code-
triggering characters by specifying the context.triggerKind
and context.triggerCharacter properties in the Comple-
tionParams property.

We can set any trigger character whose behavior is overridden by the
contents of the trigger field. This enables us to display a list of exe-
cutable commands we have written ourselves in a context-sensitive
menu. We can also associate these with documentation by specify-
ing the detail property or by allowing commands to be associated
with it by specifying the command property in CompletionItem
property.

Conclusion

The lifecycle of large software systems can last for years or even
decades, leading to many difficulties such as maintainability and up-
gradeability. Due to the continuous increase in the size of software,
more and more developers need to be involved in the development,
for whom it is important to integrate into the development team as
quickly as possible. However, this requires acquiring the relevant
knowledge of the underlying codebase in the shortest possible time.
Code comprehension tools like CodeCompass help obtaining this
information faster and more efficiently. However it is not enough in
itself to have such tools at our disposal. It is important that we can
use the features provided by these tools in the most convenient way
and implement them in more and more development environments.
Some of the most commonly used functions are the Goto definition
and the autocompletion. Conventionally, these functions needed to
be reimplemented from programming language to programming lan-
guage for each development tool, since each of the languages use
different APIs to create the same functions. The Language Server
Protocol (LSP) provides a solution to this problem. While the above
functions can be implemented without the LSP – as it has been done
in the past – the protocol provides a tool to standardize the interface
of these functions to different development tools. The real advantage
of LSP lies in standardizing communication between programming
languages and development tools. We developed a simpler connec-
tion between CodeCompass and VSCode over LSP, solving prob-
lems such as running the language server and the language client
on a separate server, transmitting and displaying diagrams from the
language server to the client, or create context dependent menus.

References

[1] Hendrik Bünder: Decoupling Language and Editor – The Im-
pact of the Language Server Protocol on Textual Domain-Specific
Languages, in Proc. of the 7th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD
2019), pp. 131–142.

[2] Alessando Del Sole: Visual Studio Code Distilled: Evolved Code
Editing for Windows, macOS, and Linux, Apress, Berkely, CA, USA,
2019.

[3] Linghui Luo, Julian Dolby, Eric Bodden: MagpieBridge: A Gen-
eral Approach to Integrating Static Analyses into IDEs and Editors,
in Proc. of the 33rd European Conference on Object-Oriented Pro-
gramming (ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 21(1)–21(25).

[4] Mónika Mészáros, Máté Cserép, Anett Fekete: Delivering Com-
prehension Features into Source Code Editors through LSP, in Proc.
of the 2019 42nd InternationalConvention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO
2019), pp. 1581–1586.

[5] Daniel A. A. Pelsmaeker, Hendrik van Antwerpen, H., Eelco
Visser: Towards language-parametric semantic editor services
based on declarative type system specifications, in Proc. Companion
of the 2019 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Human-
ity (SPLASH Companion 2019), pp. 19–20.

[6] Zoltán Porkoláb, Tibor Brunner, Dániel Krupp, Márton Csordás:
CodeCompass: an open software comprehension framework for in-
dustrial usage, in Proc. of the 26th Conference on Program Com-
prehension (ICPC’ 18), pp. 361–369.

[7] Márk Török, Norbert Pataki: Service Monitoring Agents for De-
vOps Dashboard Tool, in Proc. of the 21th International Multi-
Conference INFORMATION SOCIETY IS’2018, Volume G : Col-
laboration, Software and Services in Information Society, pp. 47–50.


