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ABSTRACT
In our previous work we introduced the Balatonboglár Model (BB) of directed graphs. We showed that BB is a Black-and-White 3-SAT problem if and only if (iff) the graph is
strongly connected (SC). BB generates a lot of so called NNP shaped clauses to represent cycles of the directed graph without detecting cycles, i.e., it is fast but bigger than necessary.
To overcome this problem, we introduce the Simplified Balatonboglár Model (SBB). The size of SBB is only 1% of the size of BB.

INTRODUCTION
In logic the most natural representation of an edge of
a directed graph, say a → b, is to use implication, i.e.,
a =⇒ b, i.e., the edge a → b can be represented by the
binary clause: (¬a ∨ b). If a graph contains two edges:
a → b, and a → c, then those can be represented by the
formula: (a =⇒ b) ∧ (a =⇒ c), which is equivalent
to two 2-clauses (¬a ∨ b) ∧ (¬a ∨ c). We call this as the
Strong Model (SM) of directed graphs [1, 2, 5].

Our second model is the Weak Model (WM) [5]. The
idea is the following: If a graph contains two edges: a→ b,
and a → c, then those can be represented by the formula:
(a =⇒ b) ∨ (a =⇒ c), which is equivalent to a 3-clause
(¬a∨ b∨ c). We need to represent cycles of the graph, too.
If a1 → a2 → · · · → an → a1 is a cycle with exit points
b1, b2, . . . , bm, then this cycle can be represented by the
clause: (¬a1 ∨ ¬a2 ∨ · · · ∨ ¬an ∨ b1 ∨ b2 ∨ · · · ∨ bm).

Our third model, the BB uses the trick that instead
of detecting each cycle, it generates from each path
a → b → c the following 3-clause: (¬a ∨ ¬b ∨ c), which
is a Negative-Negative-Positive (NNP) shaped
clause, or for short an clause, even if there is no cycle
which contains the vertices a and b. This simplification al-
lows very fast 3-SAT problem generation from a directed
graph, and the SAT instance will be a Black-and-White
3-SAT iff the input directed graph is SC. On the other
hand this trick generates a lot of superfluous clauses.

To overcome this problem, we introduce the SBB. In
this model we create the strongly connected compo-
nents (to be short: SCC) of the graph [6, 7]. For each
component we generate a cycle which contains all the
nodes of the component. Then for each such cycle
we generate NNP clauses along it. For example,
for the cycle (n1, n2, . . . nk) we generate the clauses
{{¬n1,¬n2, n3}, . . . , {¬nk,¬n1, n2}}.

We should also generate NNP clauses which link the
components. After representing the big-cycles and the
links between them, we can delete their edges and the op-
posite of those edges. The rest of the edges are "inner-
edges" which may form cycles. We represent them one
by one by an NNP clause, such that the positive literal
should be a neighbour node on the big-cycle of one of the
negative ones. Then we delete that cycle till their is no
more one. Other parts of the model are just the same as in
case of BB.

THEORETICAL RESULTS
Let D be a communication graph [1]. Then:

• SM is a Black-and-White 2-SAT problem iff the graph D is SC.

• WM is a Black-and-White SAT problem iff D is SC.

• SM ≥ WM, i.e., the set of solutions of SM is a subset of the set of solutions ofWM.

• SM >WM iff D is not SC, and it has at least one node which has more than one child node.

• Transitions Theorem: If we have SM ≥ MM ≥ WM, whereMM is an arbitrary but fixed model of D, then
MM is a Black-and-White SAT problem iff D is SC.

• SM ≥ BB ≥ WM, i.e., BB is a Black-and-White 3-SAT problem iff D is SC.

• SM ≥ BB ≥ SBB ≥ WM.
Proof: It is enough to show that for any clause inWM which represent a cycle there is a clause D in SBB, such
that D is a subset of that clause. Let C be a clause inWM such that it represents a cycle in D . From we know
that the cycle has an exit point. From this we know that there is a big-cycle such that there exists a,b, c such that
a, b ∈ C, and they are consecutive vertices in the cycle, and c is an exit point of the cycle, and b, c are consecutive
vertices in the big-cycle. So D = {¬a,¬b, c} is a suitable choice.

• SBB is a Black-and-White 3-SAT problem iff D is SC.

EXAMPLES
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Figure 1 - A (SCC) graph with 4 vertices, 6 cycles
The SM of the D on Figure 1 is:

SM = {{¬a, b}, {¬a, c}, {¬b, a}, {¬b, c},
{¬b, d}, {¬c, a}, {¬c, d}, {¬d, a}}.

(1)

Since the D on Figure is SC, its SM is a
Black-and-White SAT problem, i.e., the SAT prob-
lem in (1) has only these two solutions: {a, b, c, d}, and
{¬a,¬b,¬c,¬d}.

Its other 3 models are:

WM = {{¬a, b, c}, {¬b, a, c, d}, {¬c, a, d},
{¬a,¬b, c, d}, {¬a,¬b,¬c, d}, {¬a,¬c, b, d},
{¬d, a}, {¬a,¬b,¬d, c}, {¬a,¬c,¬d, b}}.

(2)

BB = {{¬a, b, c}, {¬b, c, d}, {¬c, a, d},
{¬d, a}, {¬a,¬b, c}, {¬a,¬b, d},

{¬a,¬c, b}, {¬a,¬c, d}, {¬b,¬c, a},
{¬b,¬c, d}, {¬b,¬d, a}, {¬c,¬d, a},

{¬d,¬a, b}, {¬d,¬a, c}}.

(3)

SBB = {{¬a, b, c}, {¬b, c, d}, {¬c, a, d},
{¬d, a}, {¬a,¬b, c}, {¬b,¬c, d},

{¬c,¬d, a}, {¬d,¬a, b}, {¬a,¬c, d}}.
(4)

All the 4 models are a Black-and-White SAT problem.

TEST RESULTS
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CONCLUSION
Our goal was to create a more compact variant of BB by keeping its nice properties. The new model is called SBB which
is a subset of BB. Its size is around 1% of the size of BB, but it is still a Black-and-white 3-SAT problem iff the
represented directed graph is SC. We checked this property also empirically by using the CSFLOC18 SAT [3, 4] solver.
Our empirical results show that SBB is near to the smallest possible model, i.e., the number of unaffected clauses reported
by CSFLOC18 is very small, i.e., SBB extended by the white and the black clause is almost MIN-UNSAT.
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