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Point forecasts

www.met.hu

Point forecast: forecast obtained from a
single run of a numerical weather predic-
tion model1.

A single forecast for each location, time
and lead time.

Numerical solution of a complex system of
non-linear partial differential equations.
Initial conditions from observations.

Advantage: easy to interpret.

Disadvantage: no information about un-
certainty.

1Køltzov, M., Casati, B., Bazile, E., Haiden, T. and

Valkonen, T. (2019) An NWP model intercomparison of

surface weather parameters in the European Arctic during the

Year of Polar Prediction Special Observing Period Northern

Hemisphere 1. Wea. Forecasting 34, 959–983.
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Probabilistic forecasting

Ensemble of forecasts: forecasts obtained from multiple runs of a
numerical weather prediction model with different initial conditions
and/or model parametrization1.

Several forecasts (8 – 255) for each location, time and lead time.

Quantities obtained from ensemble forecasts

Point forecasts, e.g. ensemble mean, ensemble median.

Dispersion, e.g. standard deviation.

Probabilities of various events, e.g. surface (2 m)
temperature is below 273.19 K (0 ◦C).

Prediction intervals corresponding to a given level of
confidence (e.g. 80%, 50%).

1Leith, C. E. (1974) Theoretical skill of Monte-Carlo forecasts. Mon. Weather Rev. 102,

409–418.
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Ensemble forecasts
Recently all major meteorological services operate ensemble prediction systems:

European Centre for Medium-Range Weather Forecasts: ECMWF ensemble, 51 members (since 1996);

UK Met Office: MOGREPS ensemble, 18 members;

US National Weather Service and Canadian Meteorological Center: NAEFS ensemble, 40 members;

National Meteorological Center of CMA: T639 ensemble, 15 members;

Deutscher Wetterdienst: COSMO-DE ensemble, 30 members;

Hungarian Meteorological Service: ALADIN-HUNEPS ensemble, 11 members.

Problem: Ensemble forecasts often show an underdispersive
character1, or biased. Some form of post-processing is
needed.

Example. Verification rank histograms of one-day ahead
ECMWF global TCo639 temperature forecasts for JJA 2016.

Buizza, R. (2018) Ensemble forecasting and the need for calibration. In Vannitsem, S.,

Wilks, D. S., Messner, J. W. (eds.), Statistical Postprocessing of Ensemble Forecasts,

Elsevier, pp. 15–48.

Verification Rank Histogram, TCo639
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Post-processing approaches
Aim: find the distribution of the future weather quantity usually with the help of ensembles and verifying
observations1.

Parametric models providing a full predictive distribution:

Bayesian model averaging (BMA); R package ensembleBMA.
Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather

Rev. 133, 1155–1174.

Non-homogeneous regression or ensemble model output statistics (EMOS); R package ensembleMOS.
Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and

minimum CRPS estimation. Mon. Weather Rev. 133, 1098–1118.

Data-based nonparametric approaches:

Quantile regression: represents the predictive distribution by a finite set of its quantiles.
Bremnes, J. B. (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon. Weather Rev. 132, 338–347.

Member-by-member post-processing: transforms each of the ensemble members individually, results in a
corrected ensemble.
Van Schaeybroeck, B. and Vannitsem, S. (2015) Ensemble post-processing using member-by-member approaches: Theoretical aspects. Q. J. R. Meteorol.

Soc. 141, 807–818.

1
Gneiting, T. and Raftery, A. E. (2005) Weather forecasting with ensemble methods. Science 310, 248–249.
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Post-processing approaches
Machine learning methods for deriving predictive distributions:

Quantile regression forests: a generalization of random forests for quantile regression.
Taillardat, M., Mestre, O., Zamo, M. and Naveau, P. (2016) Calibrated ensemble forecasts using quantile regression forests and ensemble model output

statistics. Mon. Weather Rev. 144, 2375–2393.

Neural networks
I Regression estimation of parameters of predictive distributions.

Rasp, S. and Lerch, S. (2018) Neural networks for postprocessing ensemble weather forecasts. Mon. Weather Rev. 146, 3885–3900.

I Quantile regression.

Bremnes, J. B. (2020) Ensemble postprocessing using quantile function regression based on neural networks and Bernstein polynomials. Mon.

Weather Rev. 148, 403–414.

MLP, gradient boosting machines, random forests: estimation of discrete predictive distributions (e.g.
total cloud cover), classification.
Baran, Á, Lerch, S., El Ayari, M. and Baran, S. (2020) Machine learning for total cloud cover prediction. arXiv: 2001.05948.

Predictive distributions should be

Calibrated: e.g. around 90% of the verifying observations should be contained between the lower and
upper 5% quantiles of the predictive distributions.

Sharp: e.g. the 90% central prediction intervals are narrower on average than the classical prediction
intervals based on raw ensembles.
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General Bayesian model averaging (BMA) model
X : weather quantity (vector) of interest (temperature, wind speed, wind vector, etc.).

f1, f2, . . . , fK : ensemble of forecasts for X with a given lead time.

gk(x | fk ; θk): conditional PDF of X given fk is the best forecast.

θk : parameter (vector) to be estimated with the help of training data.

BMA predictive PDF for X at a given location, time point and lead time1:

p
(
x
∣∣ f1, . . . , fK ; θ1, . . . , θK

)
=

K∑
k=1

ωkgk(x | fk ; θk).

Mixture weights: ωk ≥ 0, k = 1, 2, . . . ,K , ω1 + ω2 + . . .+ ωK = 1.

Exchangeable case: M ensemble members divided into K exchangeable groups2.

Ensemble: fk,`, k = 1, 2, . . . ,K , ` = 1, 2, . . .Mk . M1 + M2 + . . .+ MK = M.

p
(
x
∣∣ fk,`, k = 1, . . . ,K , ` = 1, . . .Mk ; θ1, . . . , θK

)
=

K∑
k=1

Mk∑
`=1

ωkgk(x | fk,`; θk).

1
Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum

CRPS estimation. Mon. Weather Rev. 133, 1098–1118.
2

Fraley, C., Raftery, A. E. and Gneiting, T. (2010) Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model
averaging. Mon. Weather Rev. 138, 190–202.
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Normal BMA model
Predictive distribution for temperature or sea level pressure:

K∑
k=1

ωkN (bk,0 + bk,1fk , σ
2).

Parameters to be estimated: bk,0, bk,1, ωk , k = 1, 2, . . . ,K , and σ2.

Estimation of b0k , b1k , k = 1, 2, . . . ,K : linear regression; ω1, . . . , ωK and σ2: ML with EM algorithm.

Example. ALADIN-HUNEPS temperature forecasts for Debrecen Airport1
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1
Baran, S., Horányi, A. and Nemoda, D. (2014) Probabilistic temperature forecasting with statistical calibration in Hungary. Meteorol. Atmos. Phys. 124,

129–142. 11 / 37



Further univariate BMA models
Wind speed

Gamma mixture.
Sloughter, J. M., Gneiting, T. and Raftery, A. E. (2010) Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J. Am. Stat.

Assoc. 105, 25–37.

Truncated normal mixture with cut-off at zero from below.
Baran, S. (2014) Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components. Comput. Stat. Data. Anal. 75,

227–238.

Precipitation accumulation

Discrete-continuous model. Point mass at zero, gamma mixture for modelling positive precipitation
accumulation.
Sloughter, J. M., Raftery, A. E., Gneiting, T. and Fraley, C. (2007) Probabilistic quantitative precipitation forecasting using Bayesian model averaging.

Mon. Weather Rev. 135, 3209–3220.

Wind direction

Mixture of Von-Mises distributions.
Bao, L., Gneiting, T., Raftery, A. E., Grimit, E. P. and Guttorp, P. (2010) Bias correction and Bayesian model averaging for ensemble forecasts of surface

wind direction. Mon. Weather Rev. 138, 1811–1821.
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Hydrological BMA models
Box-Cox transformed streamflow, water level

Normal mixture.
Duan, Q., Ajami, N. K., Gao, X. and Sorooshian, S. (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water

Resour. 30, 1371–1386.

Doubly truncated normal mixture.
Baran, S., Hemri, S. and El Ayari, M. (2019) Statistical post-processing of water level forecasts using Bayesian model averaging with doubly-truncated

normal components. Water Resour. Res. 55, 3997–4013.

Bivariate models
Wind vector

Bivariate normal mixture.
Sloughter, J. M., Gneiting, T. and Raftery, A. E. (2013) Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Mon.

Weather Rev. 141, 2107–2119.

Wind speed and temperature

Bivariate normal mixture truncated from below at zero in the wind coordinate.
Baran, S. and Möller, A. (2015) Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging. Environmetrics 26,

120–132.
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Training data
Training data: a set of ensemble forecasts and verifying observations.

Rolling training period: a sliding window with data from the preceding n time points.

Regional estimation: parameters are estimated using all
available forecast cases from the training period. A single
universal set of parameters across the entire ensemble
domain. Short training periods.

Local estimation: distinct parameter estimates for the
different stations using only the training data of the given
station.

Semi-local estimation: parameters for a given station are
estimated using training data of similar stations1.

Distance-based similarity.

Clustering-based similarity.
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Lerch, S. and Baran, S. (2017) Similarity-based semi-local estimation of EMOS models. J. R. Stat. Soc. Ser. C Appl. Stat. 66, 29–51.
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Distance based similarity
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Illustration of the 100 most similar stations measured by the four distance functions for two reference stations at

Ouessant, France (left) and Vienna, Austria (right).
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Clustering
k-means clustering, each station is characterized by an N-dimensional feature vector.

1. Station climatology. Equidistant 1
N+1

, 2
N+1

, . . . , N
N+1

quantiles of the empirical CDF of observations over
the training period.

2. Forecast errors. Equidistant quantiles of the empirical CDF of the forecast errors of the ensemble mean.

3. Combination of feature sets 1 and 2. 50 - 50 %.
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Verification scores
xs,t : observation of the weather or hydrological quantity at location s and time t.

ps,t(x), Ps,t(x): estimated predictive PDF and CDF at location s and time t with a given lead time.

x̂s,t : point forecast based on ps,t(x) or on the ensemble (mean, median).

Deterministic forecasts:

MAE: 1
n

∑
s,t

∣∣xs,t − x̂s,t
∣∣; RMSE:

√
1
n

∑
s,t

(
xs,t − x̂s,t

)2
, where n is the total number of forecast cases.

Probabilistic forecasts:

Mean continuous ranked probability score (CRPS):

CRPS :=
1

n

∑
s,t

CRPS
(
Ps,t , xs,t

)
, with CRPS

(
P, x

)
:=

∫ ∞
−∞

(
P(y)− 1{y≥x}

)2
dy .

Improvement in CRPS with respect to a reference predictive distribution Pref : continuous ranked
probability skill score (CRPSS)

CRPSS := 1− CRPS

CRPSref

.

Mean logarithmic score: LogS := 1
n

∑
s,t

(
− log

[
ps,t(xs,t)

])
.

Coverage: percentage of observations in, e.g. 90 % central prediction interval.

Sharpness: average width of central prediction interval.
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Ensemble model output statistics (EMOS)
Predictive PDF is a single parametric density where the parameters are functions of the ensemble. Parameters of
these functions are estimated by optimizing the average value of some verification score over the training data.

Temperature and pressure

Predictive distribution for temperature or sea level pressure:

N
(
a0 + a1f1 + · · ·+ aK fK , b0 + b1S

2) with S2 :=
1

K − 1

K∑
k=1

(
fk − f

)2
.

Parameters to be estimated: a0, a1, . . . , aK ∈ R and b0, b1 ≥ 0.

Minimum points of the mean value of an appropriate verification score over the training data. Usually mean
CRPS or mean logarithmic score. CRPS can be given in a closed form.

Exchangeable ensemble members:

N
(
a0 + a1

M1∑
`1=1

f1,`1 + · · ·+ am

MK∑
`K =1

fK ,`K , b0 + b1S
2

)
.

Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum
CRPS estimation. Mon. Weather Rev. 133, 1098–1118.

20 / 37



Example

ALADIN-HUNEPS temperature forecasts and predictive distributions for Debrecen Airport for 2 July 2012.
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Baran, S., Horányi, A. and Nemoda, D. (2014) Comparison of the BMA and EMOS statistical methods in calibrating temperature and wind speed forecast
ensembles. Időjárás 118, 217–241.
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Further univariate EMOS models
Wind speed

Truncated normal (TN) distribution with cut-off at zero from below.
Thorarinsdottir, T. L. and Gneiting, T. (2010) Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored

regression. J. R. Stat. Soc. Ser. A Stat. Soc. 173, 371–388.

Generalized extreme value (GEV) distribution and TN-GEV regime switching.
Lerch, S. and Thorarinsdottir, T. L. (2013) Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus A 65,

21206.

Log-normal (LN) distribution and TN-LN regime switching.
Baran, S. and Lerch, S. (2015) Log-normal distribution based EMOS models for probabilistic wind speed forecasting. Q. J. R. Meteorol. Soc. 141,

2289–2299.

TN-LN mixture distribution.
Baran, S. and Lerch, S. (2016) Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics 27, 116–130.

Precipitation accumulation

Censored generalized extreme value distribution.
Scheuerer, M. (2014) Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Q. J. R. Meteorol. Soc. 140, 1086–1096.

Censored, shifted gamma distribution.
Baran, S. and Nemoda, D. (2016) Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting.

Environmetrics 27, 280–292.
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Hydrological EMOS models
Box-Cox transformed water runoff, water level

Left censored (and right truncated) normal distribution.
Hemri, S., Lisniak, D. and Klein, B. (2014) Ermittlung probabilistischer Abflussvorhersagen unter Berücksichtigung zensierter Daten. HyWa 58, 84–94.

Right truncated normal distribution.
Hemri, S., Lisniak, D. and Klein, B. (2015) Multivariate postprocessing techniques for probabilistic hydrological forecasting. Water Resour. Res. 51,

7436–7451.

Doubly truncated normal distribution.
Hemri, S. and Klein, B. (2017) Analog based post-processing of navigation-related hydrological ensemble forecasts. Water Resour. Res. 53, 9059–9077.

Bivariate EMOS models
Wind vector

Bivariate normal distribution.
Schuhen, N., Thorarinsdottir, T. L. and Gneiting, T. (2012) Ensemble model output statistics for wind vectors. Mon. Weather Rev. 140, 3204–3219.

Wind speed and temperature

Bivariate normal distribution truncated from below at zero in the wind coordinate.
Baran, S. and Möller, A. (2017) Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature. Meteorol.

Atmos. Phys. 129, 99–112.
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ALADIN-HUNEPS ensemble
Wind speed data of 10 major cities (Miskolc, Szombathely, Győr,
Budapest, Debrecen, Nýıregyháza, Nagykanizsa, Pécs, Kecskemét,
Szeged) of Hungary. Source: HMS.

Data: 42h forecasts of 10m instantaneous wind speed (m/s)
produced by the ALADIN-HUNEPS system of the HMS and the
corresponding validating observations.

Ensemble: 10 exchangeable and one control forecast initialized at 18
UTC. Forecasts for 12 UTC two days later.

Period: 1 April 2012 – 31 March 2013. Missing: 6 days (excluded).

Calibration of raw forecasts

Ensemble range contains the observed wind speed only in 61.21 % of
the cases.

Underdispersive and uncalibrated. Nominal coverage: 83.33 %.

Verification Rank Histogram

Rank of Observation in Ensemble
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Horányi, A., Mile, M. and Szűcs, M. (2011) Latest developments around the ALADIN operational short-range ensemble prediction system in Hungary. Tellus A 63,
642–651.
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Calibration models for ALADIN-HUNEPS wind speed forecasts
Two groups: control member and 10 exchangeable members.

Post-processing models:

Gamma BMA model

Truncated normal BMA model

Truncated normal (TN) EMOS model

Log-normal (LN) EMOS model

Generalized extreme value (GEV) EMOS model

TN-LN regime-switching EMOS model.

Ensemble median below a threshold: TN EMOS, otherwise: LN EMOS.

TN-GEV regime-switching EMOS model

Ensemble median below a threshold: TN EMOS, otherwise: GEV EMOS.

TN-LN mixture EMOS model. Weighted mixture of TN and LN distributions.

Optimum score estimation with respect to mean CRPS and mean logarithmic score.

Training: Global parameter estimation, rolling training period.
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Optimal training period length and thresholds
Studies based on CRPS, MAE and RMSE scores of BMA and TN EMOS models: optimal training period length
is 43 days1.
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43 days training period length can be kept. BMA and EMOS predictive PDFs and validating observations for
313 calendar days (3130 forecast cases).

Optimal threshold values: TN-LN θ = 6.9 m/s; TN-GEV θ = 5.0 m/s.

LN proportion in TN-LN model: 4 %; GEV proportion in TN-GEV model: 15 %.

1
Baran, S., Horányi, A. and Nemoda, D. (2014) Comparison of the BMA and EMOS statistical methods in calibrating temperature and wind speed forecast

ensembles. Időjárás 118, 217–241.
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PIT histograms
TN-LN mix. (CRPS)
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Verification scores
Mean CRPS of probabilistic, MAE (median) and RMSE (mean) of point forecasts (m/s), coverage (%) and
average width (m/s) of 83.33 % central predictions intervals.

Predictive model CRPS MAE RMSE Coverage Av. w.

TN 0.738 1.037 1.357 83.59 3.53

LN 0.741 1.038 1.362 80.44 3.57

TN-LN mix. (CRPS) 0.736 1.037 1.358 83.02 3.62

TN-LN mix. (ML) 0.737 1.040 1.360 83.14 3.58

TN-LN r.s., θ=6.9 0.737 1.035 1.356 83.59 3.54

GEV 0.737 1.041 1.355 81.21 3.54

TN-GEV r.s., θ=5.0 0.735 1.039 1.355 85.59 3.72

Gamma BMA 0.760 1.075 1.427 81.87 3.72

TN BMA 0.698 1.045 1.377 85.46 3.76

Ensemble 0.803 1.069 1.373 68.22 2.88

Climatology 1.046 1.481 1.922 82.54 3.43

Differences between the CRPS values of mixture and regime-switching models are not significant.

Mean (maximal) probability of forecasting a negative wind speed:

GEV model 0.33 % (9.46 %); TN-GEV model 2.74× 10−3 % (0.15 %).
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Hydrological ensemble forecasts

Hydrological ensemble forecasts are obtained by plugging in the ensemble
weather forecasts into hydrological models. Water levels are

bounded both from above and below;

typically non-Gaussian, so Box-Cox transformation is applied1 to
normalize them.

Data: Water levels at Kaub gauge of the Rhine river and 79-member
multimodel ensemble forecasts with lead times 1-120h initialized at 6
UTC for the period 1 January 2008 – 31 December 20152.

1 member from ECMWF high-resolution;

51 members from ECMWF ensemble;

16 members from COSMO LEPS;

11 members from NCEP GEFS ensemble.

Source: icis.com
1

Duan, Q., Ajami, N. K., Gao, X. and Sorooshian, S. (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour.
30, 1371–1386.

2
Hemri, S. and Klein, B. (2017) Analog based post-processing of navigation-related hydrological ensemble forecasts. Water Resour. Res. 53, 9059–9077.
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Models for water level forecasts at gauge Kaub
Model formulation: 4 groups of exchangeable ensemble members according to the ensemble components.

Post-processing methods: doubly truncated normal BMA1 and EMOS2.

Free parameters to be estimated: 12 for BMA model (2 parameter estimation methods); 7 for EMOS model.

Training: 100-day rolling training period.

Verification: 10 April 2008 – 31 December 2015 (2822 calendar days).

Bounds: half of the minimum and double of the maximum recorded water level.
Lower bound: 16.5 cm; upper bound: 1650 cm.

Box-Cox transformation:

hλ(x) :=

{(
xλ − 1

)
/λ, λ 6= 0,

log(x), λ = 0.

Different parameter λ for each lead time providing the best fit of the
EMOS models2.
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1
Baran, S., Hemri, S. and El Ayari, M. (2019) Statistical post-processing of hydrological forecasts using Bayesian model averaging. Water Resour. Res. 55,

3997–4013.
2

Hemri, S. and Klein, B. (2017) Analog based post-processing of navigation-related hydrological ensemble forecasts. Water Resour. Res. 53, 9059–9077.
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Continuous ranked probability score
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Mean absolute error, coverage, sharpness
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Verification rank histogram, PIT histograms
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Further directions of research, ongoing projects

Application of post-processing to various ensemble prediction systems (ongoing work).

D́ıaz, M., Nicolis, O., Maŕın, J. C. and Baran, S. (2020) Statistical post-processing of ensemble forecasts of temperature in Santiago de Chile. Meteorol.

Appl. 27, paper e1818.

Calibration of ECMWF dual-resolution temperature and precipitation ensemble forecasts (ongoing work).

Baran, S., Leutbecher, M., Szabó, M. and Ben Bouallègue, Z. (2019) Statistical post-processing of dual-resolution ensemble forecasts. Q. J. R. Meteorol.

Soc. 145, 1705–1720.

Model development for heat indices (ongoing work).

Baran, S., Baran, Á., Pappenberger, F. and Ben Bouallègue, Z. (2020) Statistical post-processing of heat index ensemble forecasts: is there a royal road?

arXiv: 2001.08712.

Partners:

European Centre for Medium-Range Weather Forecasts;

Heidelberg Institute for Theoretical Studies;

Hungarian Meteorological Service;

University of Valparáıso.
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