MATHEMATICAL MODEL CHECKING
FOR COMPUTER SCIENCE EDUCATION

4

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria

IIIIIIIIIIIIII

Formal Modeling&Reasoning in Education

1.
2.
3.
4.

@

© ®» N e

10.

Definition 1.34 (Satisfaction). Satisfaction of a formula ¢ in a structure M
relative to a variable assignment s, in symbols: 9, s |= ¢, is defined recursively
as follows. (We write 9, s I~ ¢ to mean “not M, s = .”)

p=1: Mspep.

e=T: Ms ke

M, s |= ¢ iff (Val]
=t =ty M s iff Vall(ty) o
o=t Msl=piff M, s~ .

P=WAX): MskEiff Ms =y
Pp=(VX): MskEpif Mskye
P=(—=x): Mskpiff M, s -y
o= x): Ms [g iff cither

neither M, s = ¥ nor M, s |= x.

e=Vary: M, s = ¢ iff for every z-v:

Cp=3ey: Ms = iff there is an o

I,BFA
g A Me)
T,ANBFA

ILAFA B,BrI
(vL)

T,%,AVBF A I

THAA 5B

—————— (=)
T,5,A— BFAT

I-4,4
(-I)

T,-AFA

T, Ajt/a] - A

Aurs

T,VadF A

T, Aly/dlF A

s Aly/a] an

T,3eAr A

TFBA
TFAVBA

(VR)

r-A4
I,2H]

A:Aexp — (£ - N)

B:Bexp— (E—T)

C:Com— (S—%)

C[skip] = {(0,0) | o € 5}

C[X :=a] = {(6,0[n/X]) | 0 € % & n = Afa]o}
Cleo;e1] = Cllea] o Clleo]

Clif b then co else c;] =

{(0,0") | B[b]o = true & (0,0") € Cleo]}U
{(0,0") | Blb]o = false & (0,0") € Cler]}

C[while b do] = fir{T)

T(p) ={(0,0") | Bblo = true & (0,0") € poClc]} U
{(0,0) | B[b]o = false}.

Typically still presented as “paper and pencil” topics.

1/23

Formal Modeling&Reasoning in Education

17
27/ Computing the greatest common divisar by the Euctidean Algorithn
si

Sval w5
“type ot = N

rat,ninat] « pinat. ap =

Bpred dividests

107 sateinae i) vt
reduires n % 6 v n %

13- thovse resmit

157 Glianstresilt,n) 1 dsusdes(result) »

1 e a1 1 et

1 theoren gesa(aznat) « nsd - geto, 0

heoren ged st ncnac) < M % 9y 1 % § - ged(n,n) = gedin)
15 theoren gedzianatninat) - 1204 1 < n - gedinn) = ged(min,)
e

20proc gedp(minat, nznat): nat
21 requires 0 { ned;
0 entures reat = gdtm,n)

2

)
Teturn 3 3+ 0 then b slee

9 fun g (nznat,ninat : nat

xercise: Formal Specification

Submitter: | Wolrgang Schreiner

RISC Algoithm Language RISCAL) T e x
Flle Edt Help
Fie: sotware/RISCALspeciged xt. Avaysis
(i))
KU LIT Project LogTechEdu

1 of 2 grade points have been earned so far.

Unlock Exercise Reset Exercise Get Certficate

TASK DESCRIPTION:

In the following we consider arrays of maximum length N whose elements are
\atural numbers of maximum size M:

val N = [2 ; // choose small values

valm= 3 ;

type Elem = N[M]; type Arr = Array[N,Elem]; type Index = Z[-1,|

Take the problem of finding the smallest index i at which an element e occurs
among the first n elements of an array a. Your task is to develop a formal
specification of this problem, Le., to define a predicate P(a,n,e), the input
condition of the problem, and a predicate Q(a,n,e,i), the output condition.

pred P(a:Arr,n:Index,e:Elen) =

77 Tormulate here the input condition

A
3i:Index. 0 = iad<naalil =

But today the educational process can be substantially supported by software.

pred 0(a:Arr,n:Index,e:Elem,i:Index) =

77 fornulate here the output condition
Osini<nnaalil =en

Vi0:Index. 0 = 10 A 10 < n A a[i0] = e = i = 10

TASK: check whether your specification adequately specifies the following codf

Execution completed for ALL inputs (268 nl
SUCCESS termination

Check correct() 0

AXolotl

S 4

AW (x=>y),2) @A, x,wH
A, ((x=y),zFwW) A, (zFx)|
AL WEX,y,2) A, Why 2

A, (x,y,zHwW) A, (y, z,x- 4

Aty viv ALIA

o <

2/23

Projects LOGTECHEDU and SemTech

B LOGTECHEDU: Logic Technologies for Computer Science Education.
0 JKU LIT (Linz Institute of Technology), 2018—2020.
0 Institutes FMV (Biere, Cerna, Seidl) and RISC (Schreiner, Windsteiger).
(] http://fmv. jku.at/logtechedu

B SemTech: Semantic Technologies for Computer Science Education.

[0 Austrian OEAD WTZ and Slovak SRDA, 2018-2019.
O JKU Linz (Schreiner) and TU Kosice (Novitzk4, Steingartner).
[J https://www.risc.jku.at/projects/SemTech

Investigate the potential of formal modeling&reasoning software for education.

3/23

http://fmv.jku.at/logtechedu
https://www.risc.jku.at/projects/SemTech

Educating with the Help of Formal Models

B Today much of modeling&reasoning can be automated by computer software.
[J Substantial advances in computational logic (automated reasoning, model
checking, satisfiability solving).
B By the application of such software education may be supported.

[0 May demonstrate the practical usefulness of theory.
[J May increase the motivation of students to model and to reason.

B The ultimate goal is self-directed learning.

[J Teachers become “enablers” by providing basic knowledge and skills.
0 Students “educate themselves” by solving problems.

+ (Voluntary) quizzes, (mandatory) assignments, possibly (graded) exams.

Core idea: let students actively engage with lecturing material by solving concrete
problems and by receiving immediate feedback from the software.

4/23

Research Strands

B Solver Guided Exercises (Limboole, Boolector)

B Teaching Solver Technology (Limboole, Boolector)

B Proof Assistants for Education (Theorema, AXolotl)

B Specification and Verification Systems for Education (RISCAL)

B Formal Semantics of Programming Languages (_Zane)

B Logic across the Subjects in Primary, Secondary and Higher Education

Various aspects of the general idea.

5/23

Example: AXolotl

Author: David Cerna; Google Play Store (search for “AXolotl Logic Software”)

. ! wo3xn 1016 & . a .
Problem and Rules Terms To Match Terms To Match Problem and Rules

Wk (x=y),2) W (x=y),2)

(p=agk({(@=n=>pE=n) ((@=1,pP=>qF(@E=r)

? ?

(F(p=a=>=>n=>E=>r (F(e=q=(a=n=@E=r
- Jll __ Matching Substitution ___ [ReScdll Matching Substitution ___ [ReScd -

X
A, (WH(X=Y),2) @b, (x,wH A, (WH(x=Y),2) @b, (x,wH
A, (x=y),z-wW) @b, @Fx, = = A, ((x=y),z-W) @b, @Fx,
A, (Wkx,y,z A, (wky,z, A, (Wkx,y,z A, (wky,z,

WXy D s, iy ®=q @=0=6=n) WXy D s, Wy
A (x,y,zHwW) @A, (y,z,x+ A (x,y,zHw) @A, (y,z,x+
A (¥ viexy 2V IA Variable 2 of 4 Variable 3 of 4 A (v viex 2V 0A
n o] < n o < mn o < m o <

Proving on a smartphone by a purely touch-based interface (no keyboard input).
6/23

The RISC Algorithm Language (RISCAL)

A language and software system for investigating finite mathematical models (i.e.,
a “mathematical model checker”).

Formulation of mathematical theories and theorems.
Formulation and specification of (also non-deterministic) algorithms.

All types are finite (with sizes determined by model parameters).

[|
|
B Rooted in strongly typed first order logic and set theory.
[|
B All formulas are automatically decidable.

|

Correctness of all algorithms is decidable.
B Automatic generation of (again decidable) verification conditions.

Checking in some model of fixed size before proving in models of arbitrary size.

7/23

The RISCAL Software

RISC Algorithm Language (RISCAL)

File Edt Help
Fite:fusra/schreinelrepositories/RISCAL trunk/spec/ged. txt
CBE

1/
277 Computing the greatest common divisor by the Euclidean Algorithm
377

)
Sval N: 4
S type nat = NINI;

Spred divides(n:nat,ninat) « 3p:nat. m-p =

10 fun ged(n:nat,n:nat): nat
Fequires m# 0 v n %6
choose resultinat with
divides(result,m) A divides(result,n) A
arinat. dividés(r,m) A divides(r,n) A r > result;

16val ginat = ged(N,N-1);
17

15 thaoren gada(n:nat) « w0 » geda,0

15 theoren ged(n. 220V gedtan) = gedtnm;
29 theores ged2(n At = TZnancn - gcdtmn - gedtminn;

b

upm ocdp(minat,ninat): nat
" requires me0 ¢ nz0;
31 embures resatt = gtd(mm);

25 varainat=mi
27

28 while 2
2 ta

-0
gcd(old_a,01d b);

5 tariont gcaiam =
31 decreases ashi

2

33 if axb then

3 2= asb:

3 else

e b= bsa;

37

1
Feturn if a - 0 then b else a;
¥

41 fun gedt(mnat, ninat): nat
42 requires me

45 ensures result okt
43 _decreases n

Analysis

>0 veu

Translation: (] Nondeterminism Default Value: 0

[#Sitent Input

Execution:

Visualization:

Parallelism: (| Multi-Threaded Threads: 4.

Operation: | g5 || gcdp(z,2)

Exccution complatad for ALL

Execution completed for ALL’

Erecuting ocdh > LoopDpo(2.2)

(Trace [Tree With: 800

Other Values: | [2)

Per Mille: Branche:

Helght: 600
[Distributed Servers:

nputs (98 ms, 48 checked, 1 inadmissible).
stic branches have been considered.

) with all 49 inputs.

nputs (7 ms, 48 checked, 1 inaduissible)

cked,
e been considare
) vith all 45 in puts.
tputs (& ns. 4 checked, 1 inadnissible).
) Puith all 49’ input

uts. (32 ns, 46" chacked, 1 inadnissible)
SHic branches have been considered.
) with all 49 inputs.

nputs (300 ns, 43 checked, 1 inadnissible).

stic branches have been conssdered

) with all 49 ir

nputs. (540 ns, 45 chicked, 1 snadnissible).
nistic branches have

 been conside
) with all 49 ir

Aputs (802 ae, 48 checked, 1 inadaissisie)
stic branches”have been considered.

) with all 49 ir

nputs. (665 ns, 45

1 inadnissible) .
d.

hecked, 1 inadnissibte).

Tasks

9Cdp(Z.2)
Execute operation
Validate specifcation
Execute specification
Is precondition satisfiable?
1s precondtion not trvial?
Is postcondition always satisfizble?)
Is postcondtion always not trivial?
Is postcondition sometimes not triv|
Is result uniquely determined?
Verify specification preconditions
Does operation precondtion hold?
Verify correctness of result
Is result correct?
Verify iteration and recursion
Does loop invariant nitially hol?
Does loop invariant initially hold?
15 loop mezsure non-negative?
15 loop invariant preserved?
15 loop invariant preserved?
15 loop invarint preserved?
Is loop invariant preserved?
15 loop measure decreased?

WARNING. ot a1 e bean consida
Erccuting Gcdp.5. LoopOp? (Z,2) with oLl 43 inputs.

WARNING: not all nondeterministic branches have been considered

puts (296 ms, 48 chacked, 1 inadmissible) .

@ls loop measure decreased?

«

Verify implementation preconditions
@ Does operation preconditon hold?

£ Does oneration precondion hold?

https://www.risc.jku.at/research/formal/software/RISCAL

8/23

https://www.risc.jku.at/research/formal/software/RISCAL

Theories and Theorems

val N: [;
type Literal
type Clause Set[Literal] with -31€value. -1€Evalue;
type Formula Set[Clause];

type Valuation = Set[Literall;

Z[-N,NT;

pred satisfies(v:Valuation, l:Literal) « lEv;

pred satisfies(v:Valuation, c:Clause) « JlEc. satisfies(v,

1);

pred satisfies(v:Valuation, f:Formula) « VcEf. satisfies(v,c);

pred satisfiable(f:Formula) « dv:Valuation. satisfies(v,f);

pred valid(f:Formula) « Vv:Valuation. satisfies(v,f);

fun not(f: Formula):Formula = { ¢ | c:Clause with Vdef. Jled. -l€c };

theorem notValid(f:Formula) < valid(f) < -satisfiable(not(f));

First-order logic, integers, tuples/records, arrays/maps, sets, algebraic types.

9/23

Declarative Algorithms

fun literals(f:Formula):Set[Literal] = {1l | l:Literal with 3Jc€f. 1&c};
fun substitute(f:Formula,l:Literal):Formula = {c\{-1} | c&f with -(l€c)};
multiple pred DPLL(f:Formula)

ensures result -« satisfiable(f);

decreases |literals(f)|;

if f = @[Clause] then

T

else if e[Literal] € f then
1

else

choose 1€literals(f) in
DPLL(substitute(f,1)) v DPLL(substitute(f,-1));

Functions, predicates, implicitly defined constants and functions.

10/23

Imperative Algorithms

proc DPLL2(f:Formula): Bool
ensures result « satisfiable(f);

var satisfiable: Bool = L;
var stack: Array[N+1,Formula] = Array[N+1,Formula](2[Clause]);
var number: RN[N+1] = 0;
stack[number] = f; number = number+l;
while -satisfiable A number>0 do
invariant 0 = number A number = N+1;
invariant number > @ A stack[number-1] # @[Clause] A -g[Literal] € stack[number-1] = number < N+1;
invariant satisfiable(f) < satisfiable v 3Ji:N[N+1] with i<number. satisfiable(stack[i]);
decreases if satisfiable then 0 else jk:N[N] with k<number. size(stack[k]);

number = number-1;
var g:Formula = stack[number]
if g = @[Clause] then
satisfiable = T;
else if -w[Literal]l€g then
{
choose l€literals(g);
stack[number] = substitute(g,-1); number = number+l;
stack[number] = substitute(g,l); number = number+l;

}

return satisfiable;

Procedures, variables, loops. 11/23

Transition Systems

proc system(x@: Positions, y0: Positions): ()
requires init(x0, y0);
{

var X: Positions = x0; var y: Positions = y0;

var rs: Array[N+1,Robot] = Array[N+1,Robot](0);
var ds: Array[N+1,Direction] = Array[N+1,Direction](Direction!Stop);

for var i:N[N] = 0; i < N; i = i+l do

{
choose r: Robot, d: Direction with nextDir(x, y, r, d);
rs[il := r; ds[i] = d;

X = moveX(x, r, d); y = moveY(y, r, d);
assert noCollision(x, y) v print rs, ds in L1;
b
1

Nondeterministic systems defined by initial state condition and next state relation.
12/23

RISCAL Checking

Using N=2.
Type checking and translation completed.

Executing notValid(Set[Set[Z]]) with selected 512 inputs.
Execution completed for SELECTED inputs (111 ms, 512 checked, O inadmissible).

Executing DPLL(Set[Set[Z]]) with selected 512 inputs.
Execution completed for SELECTED inputs (1219 ms, 512 checked, 0 inadmissible).

Executing DPLL2(Set[Set[Z]]) with selected 512 inputs.
435 inputs (435 checked, 0 inadmissible, 0 ignored)...
Execution completed for SELECTED inputs (2436 ms, 512 checked, 0 inadmissible).

Executing DPLL_OutputCorrect(Set[Set[Z]]) with selected 512 inputs.
Execution completed for SELECTED inputs (609 ms, 512 checked, O inadmissible).

Automatic checking of theorems, algorithms, generated verification conditions.
13/23

Application: Mathematical Modeling

val N:N; // variablex x@,...,xN

val M:N; // values O,...,M

type Var = N[N]; // a variable

type Val = N[M]; // a value

type Ass = Map[Var,Vall; // an assignment of variables to values
type Pred = Set[Ass]; // a predicate as a set of assignments

val Ass = { a | a:Ass };

pred independent(P:Pred, x:Var) o
Va:Ass, vl:Val, v2:Val.
(a with [x] = vl) € P » (a with [x] = v2) € P;

fun EXISTS(x:Var, P:Pred):Pred =
{ a | a:Ass with 3Jv:val. (a with [x] =v) €P } ;
theorem Existsl(x:Var, P:Pred) =
¥Q:Pred with independent(Q,x). Q = EXISTS(X,P) «
P € Q A VQO:Pred with independent(Q0,x). P < Q0@ = Q < QO;
theorem Exists2(x:Var, P:Pred) =
EXISTS(x,P) = 1{ Q | Q:Pred with independent(Q,x) A P € Q };

Executing Exists1(Z,Set[Array[Z]]) with all 768 inputs.
Execution completed for ALL inputs (4311 ms, 768 checked, 0 inadmissible).
Executing Exists2(Z,Set[Array[Z]]) with all 768 inputs.
Execution completed for ALL inputs (1674 ms, 768 checked, 0 inadmissible).

Validating conjectures (respectively the formalization of theorems).

14/23

Application: Specifying and Verifying Algorithms

proc gcdp(m:nat,n:nat): nat
requires m#0 v n#0;
ensures result = gecd(m,n);

var a:nat = m
var b:nat = n
while a > A
invariant a
invariant g
decreases a

if a > b then

a = a%b;
else
b = b%a;

return if a = @ then b else a;

] b
= z0;

cd(a,b) = gcd(old_a,old_b);
b

Executing
Execution
Executing
87 inputs
Execution

gedp(Z,Z) with all 121 inputs.

ep(22)

2 Execute operation
Validatespecifcation

A Execute speciication

s precondition satisfiable?
Bls preconditon not rvial?
s postcondition always saisiable?
s postconditon aways ot rvial?
@15 posteonditon sometimes nottrvial?
@ result uniquely determined?
Verifyspecifcation reconditons
 Does operation precondition hold?
Verify correctness ofresult
Bls result correct?
Verifyiterationand recursion
 Does loop invariantniially hold?
2 Does loop invariant ntially hold?
s loop measure non-negative?
s loop imvariantpreserved?
@i loop invarian preserved?
s loop ivariantpreserved?
15 loopinvariant peserved?

@lsloop! e decreased?
@5 loop measure decreased?
Verify implementation preconditions

2 Does operation precondition hold?

peration precondition hold?
peration precondition hold?

s operation precondition hold?

Exccute operation
Validate specification
Execute specification
Is precondition satisfiable?
Is precondition not trvial?
Is postcondition always satisiable?
Is postcondition always not trivial?
s postcondition sometimes not trivial?
Is resultuniquely determined?
Verify specification preconditions.
Does operation precondition hold?
Verify correctness of result
s result correct?
Verify teration and recursion
Does oopinvariantintialy hold?
Does loop invariant itially hold?
Is loop measure non-negative?
s loopinvariant preserved?
Is loopinvariant preserved?
s loopinvariant preserved?
s loopinvariant preserved?
s loop measure decreased?
Isloopmeasure decreased?
Verify implementation preconditions
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?
Does operation precondition hold?

completed for ALL inputs (172 ms, 120 checked, 1 inadmissible).

_gedp_b_Pre0p3(Z,Z) with all 121 inputs.
(86 checked, 1 inadmissible, O ignored)...
completed for ALL inputs (2843 ms, 120 checked, 1 inadmissible).

Validating algorithms, their specification, annotations, verification conditions. 15/23

RISCAL Approach to Model Checking/Formula Decision

ComSem := Single + Multiple
Single := Command — (Context — Context)
Multiple :== Command — (Context — Seq(Context))
Seq(T) := Unit — (Null + Next(T, Seq(T)))
[.1: Command — Single
[if E then C'] := Ac. if [E](c) then [C'](c) else ¢
interface ComSem {
public interface Single extends ComSem, Function<Context,Context> { }

public interface Multiple extends ComSem, Function<Context,Seq<Context> > { }

}
interface Seq<T> extends Supplier<Seq.Next<T> > { ... }

ComSem.Single ifThenElse(BoolExpSem.Single E, ComSem.Single C)
{ return (Context c) -> E.apply(c) 7 C.apply(c) : c; }

Translation of every RISCAL phrase to its (potentially nondeterministic) semantics
and the execution of this semantics. 16/23

RISCAL Formula Decision (Experimental Alternative)

(set-logic QF_UFBV)

(declare-fun x() (_ BitVec 4))
(define-fun y() (_ BitVec 4)#b0001)
(assert (not (bvule x (bvadd x y))))
(check-sat)

B Translation of RISCAL theory to SMT-LIB. [{exit)

[0 Author: Franz-Xaver Reichl (master thesis).
O QF_UFBYV: quantifier-free formulas over bitvectors with uninterpreted functions.
[J Well supported by various SMT solvers: Boolector, Z3, Yices, CVC4, ...
J Elimination of quantifiers by skolemization and expansion.
[J Translation of integers, tuples/records, arrays/maps, sets, .. .to bit vectors.
» Non-trivial because, e.g., RISCAL uses “true” mathematical integers.

Much faster in many (not all) cases, systematic benchmarks under way.

17/23

RISCAL Visualization

Level 0: forallPexistsQFormula() - o %

Pruned evaluation trees to explain the truth value of a formula.

18/23

RISCAL Counterexample Generation

theorem _search_0_LoopOp6(a:array, x:elem) &
Vizint, r:int. (((CCO < i) A (1 < M) A ..) =
(let 1 = i+l in

(Vj:int. (CC0 <) A (G < 1)) = (alj]l # I

ERROR in execution of _search_0_LoopOp6([0,0],0): evaluation of
_search_0_Loop0Op6

at unknown position:
theorem is not true

ERROR encountered in execution.

var i:int = 0;
var r:int = -1;
Executing __search_0_LoopOp6_refute(). while 1< N A r=-1do
. . invariant @ =i a1 =N
This sequence of assignments leads to a counterexample invariant Vicint, 0 s iad<ia[il £ x:
(note the underlined editor lines): invariant r=-1v (r=1ai<Nna[r]=x);
decreases if r = -1 then N-1 else 0;
a=[0,0],x=0 {
i=0,r=-1 if a X then r = 1;
] e
i=1
=0 return r;

Core information to explain the invalidity of a formula.

19/23

RISCAL Web Exercises

Exercise: Formal Specification KU LIT Project LogTechFrly

= okay? submitter, points

Submitter: W, ng Schreiner i
1 of 2 grade points have been earned so far. H ‘Web Browser Execution Server
Uniock Beerce | [Resetrercie | [GetComcats : - g n
! webex. wsgi RISCAL
: exercise.himl putaid .
TASK DESCRIPTION: | i

uid webex.abort

In the following we consider arrays of maximum length N whose elements are
natural numbers of maximum size M:

val N = [2 ; // choose small values

uid

jog
certificates

[webex. certitfy]

vatm= 3 ; -

data.txt

type Elem = N[M]; type Arr = Array[N,Elen]; type Index = Z[-1,N];

Web Server

Take the problem of finding the smallest index i at which an element e occurs.
‘among the first n elements of an array a. Your task is to develop a formal exercise huml| exercise.nt
specification of this problem, i efine a predicate P(a.n.e). the input

Condition of the problem, and a predicate Q(a,n,e,), the output condition

l«{ | webex.template

pred P(a:Arr,n:Index, e:EL
77 Tormulate here the input condition ; == —
Ozna F
JizIndex. 0 s i A i<naalil=e i [} } — }

pred Q(a:Arr,n:Index,e:Elem,1: Index)
77 _fornulate fere the output condition I i
=iani<nanaali] =
Vio:Index. 0= 0 A 16 < n r a[10] = e - 1 = 10

TASK: check whether your specification adequately specifies the following code

oot | @

Execution completed for ALL inputs (268 ms, 1296 checked, 2860 inadmissible).
SUCCESS termination. J

Framework for web-based exercises checked by a RISCAL server.

20/23

Educational Usage

B “Formal Methods in Software Development” (JKU, master programs
“Computer Science” and “Computer Mathematics”)
0 RISCAL: formal problem specifications; specification and verification of
imperative programs.
B “Formal Methods and Specification” (TU Prague, Stefan Ratschan, master
program “Informatics”)
[J RISCAL: formal specification and verification of imperative programs.
B “Formal Modeling” (JKU, bachelor program “Technical Mathematics”)
O RISCAL: formal modeling of computational problems, search and scheduling
problems (“puzzles”), dynamic systems.
B “Logic” (JKU, bachelor prog. “Computer Science” and “Artificial Intelligence”)
O RISCAL, AXolotol, Theorema, Limboole, Boolector, Z3.
[J Bonus (RISCAL Web) and laboratory exercises (RISCAL desktop, AXolotol).

B Various Bachelor and Master Theses
21/23

RISCAL Experience

Observations, results of questionnaires, test/exam results.

B Students with some technical/formal background (2nd year and higher):
[J High satisfaction with ease of use.
[J Much more liked than “proof-based” logic software.
[J Many students were indeed enabled to independently develop adequate formal
specifications, models, program annotations.
B Absolute beginners (1st semester):
0 More used than other tools on FO and SMT (but less than SAT solvers).
[0 Those who performed the exercises scored better in tests.
[] Students that scored poorly in tests did not use the software.
O “Extrinsic motivation”: mainly used to get additional grade points.

From a certain background/level on, substantial increase in motivation and interest
(but not a statistically significant effect on grades).
22/23

Conclusions and Further Work

B Formal modeling&reasoning software can indeed be a factor to increase
interest in “formal” topics and foster “self-directed” learning.

B However, students mainly profit if they already have certain abilities
respectively some background.

B Care has to be taken to not “loose” the weaker beginners; these are easily
overwhelmed by information overload or (trivial) syntactic/technical difficulties.

B We are currently running a beginner’s course with an easier to use web-based
interface and will evaluate the difference it makes.

B Future work will concentrate on development of software-based course
materials and on technical extensions (integration with interactive provers,
modeling and reasoning about concurrency).

https://www.risc.jku.at/research/formal/software/RISCAL

23/23

https://www.risc.jku.at/research/formal/software/RISCAL

