
MATHEMATICAL MODEL CHECKING
FOR COMPUTER SCIENCE EDUCATION

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria

Formal Modeling&Reasoning in Education

Typically still presented as “paper and pencil” topics.
1/23

Formal Modeling&Reasoning in Education

But today the educational process can be substantially supported by software.
2/23

Projects LOGTECHEDU and SemTech

� LOGTECHEDU: Logic Technologies for Computer Science Education.
� JKU LIT (Linz Institute of Technology), 2018–2020.
� Institutes FMV (Biere, Cerna, Seidl) and RISC (Schreiner, Windsteiger).
� http://fmv.jku.at/logtechedu

� SemTech: Semantic Technologies for Computer Science Education.
� Austrian OEAD WTZ and Slovak SRDA, 2018–2019.
� JKU Linz (Schreiner) and TU Kosice (Novitzká, Steingartner).
� https://www.risc.jku.at/projects/SemTech

Investigate the potential of formal modeling&reasoning software for education.

3/23

http://fmv.jku.at/logtechedu
https://www.risc.jku.at/projects/SemTech

Educating with the Help of Formal Models

� Today much of modeling&reasoning can be automated by computer software.
� Substantial advances in computational logic (automated reasoning, model

checking, satisfiability solving).

� By the application of such software education may be supported.
� May demonstrate the practical usefulness of theory.
� May increase the motivation of students to model and to reason.

� The ultimate goal is self-directed learning.
� Teachers become “enablers” by providing basic knowledge and skills.
� Students “educate themselves” by solving problems.

• (Voluntary) quizzes, (mandatory) assignments, possibly (graded) exams.

Core idea: let students actively engage with lecturing material by solving concrete
problems and by receiving immediate feedback from the software.

4/23

Research Strands

� Solver Guided Exercises (Limboole, Boolector)

� Teaching Solver Technology (Limboole, Boolector)

� Proof Assistants for Education (Theorema, AXolotl)

� Specification and Verification Systems for Education (RISCAL)

� Formal Semantics of Programming Languages (Jane)

� Logic across the Subjects in Primary, Secondary and Higher Education

Various aspects of the general idea.

5/23

Example: AXolotl

Author: David Cerna; Google Play Store (search for “AXolotl Logic Software”)

; ; ;

Proving on a smartphone by a purely touch-based interface (no keyboard input).
6/23

The RISC Algorithm Language (RISCAL)

A language and software system for investigating finite mathematical models (i.e.,
a “mathematical model checker”).

� Formulation of mathematical theories and theorems.

� Formulation and specification of (also non-deterministic) algorithms.

� Rooted in strongly typed first order logic and set theory.

� All types are finite (with sizes determined by model parameters).

� All formulas are automatically decidable.

� Correctness of all algorithms is decidable.

� Automatic generation of (again decidable) verification conditions.

Checking in some model of fixed size before proving in models of arbitrary size.

7/23

The RISCAL Software

https://www.risc.jku.at/research/formal/software/RISCAL

8/23

https://www.risc.jku.at/research/formal/software/RISCAL

Theories and Theorems

First-order logic, integers, tuples/records, arrays/maps, sets, algebraic types.

9/23

Declarative Algorithms

Functions, predicates, implicitly defined constants and functions.

10/23

Imperative Algorithms

Procedures, variables, loops. 11/23

Transition Systems

Nondeterministic systems defined by initial state condition and next state relation.
12/23

RISCAL Checking
Using N=2.

Type checking and translation completed.

...

Executing notValid(Set[Set[Z]]) with selected 512 inputs.

Execution completed for SELECTED inputs (111 ms, 512 checked, 0 inadmissible).

Executing DPLL(Set[Set[Z]]) with selected 512 inputs.

Execution completed for SELECTED inputs (1219 ms, 512 checked, 0 inadmissible).

Executing DPLL2(Set[Set[Z]]) with selected 512 inputs.

435 inputs (435 checked, 0 inadmissible, 0 ignored)...

Execution completed for SELECTED inputs (2436 ms, 512 checked, 0 inadmissible).

Executing DPLL_OutputCorrect(Set[Set[Z]]) with selected 512 inputs.

Execution completed for SELECTED inputs (609 ms, 512 checked, 0 inadmissible).

Automatic checking of theorems, algorithms, generated verification conditions.
13/23

Application: Mathematical Modeling

Executing Exists1(Z,Set[Array[Z]]) with all 768 inputs.

Execution completed for ALL inputs (4311 ms, 768 checked, 0 inadmissible).

Executing Exists2(Z,Set[Array[Z]]) with all 768 inputs.

Execution completed for ALL inputs (1674 ms, 768 checked, 0 inadmissible).

Validating conjectures (respectively the formalization of theorems). 14/23

Application: Specifying and Verifying Algorithms

;

Executing gcdp(Z,Z) with all 121 inputs.

Execution completed for ALL inputs (172 ms, 120 checked, 1 inadmissible).

...

Executing _gcdp_5_PreOp3(Z,Z) with all 121 inputs.

87 inputs (86 checked, 1 inadmissible, 0 ignored)...

Execution completed for ALL inputs (2843 ms, 120 checked, 1 inadmissible).

Validating algorithms, their specification, annotations, verification conditions.15/23

RISCAL Approach to Model Checking/Formula Decision
ComSem := Single +Multiple

Single := Command → (Context → Context)

Multiple := Command → (Context → Seq(Context))

Seq(T) := Unit → (Null +Next(T,Seq(T)))

[.] : Command → Single

[if E then C] := λc. if [E](c) then [C](c) else c

interface ComSem {

public interface Single extends ComSem, Function<Context,Context> { }

public interface Multiple extends ComSem, Function<Context,Seq<Context> > { }

}

interface Seq<T> extends Supplier<Seq.Next<T> > { ... }

ComSem.Single ifThenElse(BoolExpSem.Single E, ComSem.Single C)

{ return (Context c) -> E.apply(c) ? C.apply(c) : c; }

Translation of every RISCAL phrase to its (potentially nondeterministic) semantics
and the execution of this semantics. 16/23

RISCAL Formula Decision (Experimental Alternative)

(set-logic QF_UFBV)

(declare-fun x() (_ BitVec 4))

(define-fun y() (_ BitVec 4)#b0001)

(assert (not (bvule x (bvadd x y))))

(check-sat)

(exit)� Translation of RISCAL theory to SMT-LIB.
� Author: Franz-Xaver Reichl (master thesis).
� QF_UFBV: quantifier-free formulas over bitvectors with uninterpreted functions.
� Well supported by various SMT solvers: Boolector, Z3, Yices, CVC4, . . .
� Elimination of quantifiers by skolemization and expansion.
� Translation of integers, tuples/records, arrays/maps, sets, . . . to bit vectors.

• Non-trivial because, e.g., RISCAL uses “true” mathematical integers.

Much faster in many (not all) cases, systematic benchmarks under way.

17/23

RISCAL Visualization

Pruned evaluation trees to explain the truth value of a formula.

18/23

RISCAL Counterexample Generation
theorem _search_0_LoopOp6(a:array, x:elem) ⇔
∀i:int, r:int. ((((((0 ≤ i) ∧ (i ≤ N)) ∧ ...) ⇒
(let i = i+1 in

(∀j:int. (((0 ≤ j) ∧ (j < i)) ⇒ (a[j] 6= x))))));

ERROR in execution of _search_0_LoopOp6([0,0],0): evaluation of

_search_0_LoopOp6

at unknown position:

theorem is not true

ERROR encountered in execution.

Executing __search_0_LoopOp6_refute().

This sequence of assignments leads to a counterexample

(note the underlined editor lines):

a=[0,0],x=0

i=0,r=-1

i=1

j=0

Core information to explain the invalidity of a formula. 19/23

RISCAL Web Exercises

RISCAL

exercise.html

data.txt

webex

exercise.txt

Web Server

uid

Web Browser

exercise.html

webex.verify okay? submitter, points

webex.template

input,uid

result,log,certificate

uid.abort uid.log

webex.abort

webex.wsgi

certificates

certificate
webex.certify

certificate

webex.monitor
log

uid

Execution Server

Framework for web-based exercises checked by a RISCAL server.

20/23

Educational Usage

� “Formal Methods in Software Development” (JKU, master programs
“Computer Science” and “Computer Mathematics”)
� RISCAL: formal problem specifications; specification and verification of

imperative programs.
� “Formal Methods and Specification” (TU Prague, Stefan Ratschan, master

program “Informatics”)
� RISCAL: formal specification and verification of imperative programs.

� “Formal Modeling” (JKU, bachelor program “Technical Mathematics”)
� RISCAL: formal modeling of computational problems, search and scheduling

problems (“puzzles”), dynamic systems.
� “Logic” (JKU, bachelor prog. “Computer Science” and “Artificial Intelligence”)

� RISCAL, AXolotol, Theorema, Limboole, Boolector, Z3.
� Bonus (RISCAL Web) and laboratory exercises (RISCAL desktop, AXolotol).

� Various Bachelor and Master Theses
21/23

RISCAL Experience

Observations, results of questionnaires, test/exam results.

� Students with some technical/formal background (2nd year and higher):
� High satisfaction with ease of use.
� Much more liked than “proof-based” logic software.
� Many students were indeed enabled to independently develop adequate formal

specifications, models, program annotations.
� Absolute beginners (1st semester):

� More used than other tools on FO and SMT (but less than SAT solvers).
� Those who performed the exercises scored better in tests.
� Students that scored poorly in tests did not use the software.
� “Extrinsic motivation”: mainly used to get additional grade points.

From a certain background/level on, substantial increase in motivation and interest
(but not a statistically significant effect on grades).

22/23

Conclusions and Further Work

� Formal modeling&reasoning software can indeed be a factor to increase
interest in “formal” topics and foster “self-directed” learning.

� However, students mainly profit if they already have certain abilities
respectively some background.

� Care has to be taken to not “loose” the weaker beginners; these are easily
overwhelmed by information overload or (trivial) syntactic/technical difficulties.

� We are currently running a beginner’s course with an easier to use web-based
interface and will evaluate the difference it makes.

� Future work will concentrate on development of software-based course
materials and on technical extensions (integration with interactive provers,
modeling and reasoning about concurrency).

https://www.risc.jku.at/research/formal/software/RISCAL

23/23

https://www.risc.jku.at/research/formal/software/RISCAL

