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Abstract
We provide a new cryptographic system based on latin squares and error-correcting
codes. The required key for decrypting can be computed by the encryption key,
therefore the key has to be kept as a secret and a secure key exchange scheme
is required. In the current paper, we introduce a scheme for the key exchange,
where the key consists of permutations on a set with 𝑛 elements. We determine
the requirements for the cryptosystem and analyze its security.

Cryptographic system
Let 𝐿 be a latin square of order 𝑛 and denote its row permutations by 𝜎1, . . . , 𝜎𝑛 and
its column permutations by 𝜏1, . . . , 𝜏𝑛 respectively. Further, let 𝐺 be a generator
matrix of a binary linear code 𝐶, whose decoding algorithm can correct 𝑡 errors.

Key Choose a subset 𝐼1 × 𝐼2 ⊆ {1, . . . , 𝑛} × {1, . . . , 𝑛} and compute

𝜌 =
∏︁
𝑖∈𝐼1

𝜎𝑖

∏︁
𝑗∈𝐼2

𝜏𝑗 .

Then the secret key of the cryptographic scheme is (𝐺, 𝜌).
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Encryption Let 𝑚 be the message to be encrypted. Then the encrypted message
is

𝐸𝑛𝑐(𝑚) = (𝑚𝐺)𝜌,

which means we apply the permutation 𝜌 to the binary vector 𝑚𝐺.

Decryption From the secret key, we can compute 𝜌−1, such that 𝜌 · 𝜌−1 =
𝜌−1 · 𝜌 = 1𝑖𝑑 ∈ 𝑆𝑛. Thus if 𝑦 = 𝐸𝑛𝑐(𝑚), then we first compute 𝑧 = 𝑦𝜌−1 and then
apply the decoding algorithm of 𝐶 to 𝑧.

It is clear that 𝑧 = 𝑦𝜌−1 = (𝑚𝐺)𝜌𝜌−1 = 𝑚𝐺 and thus decoding 𝑧, we get back
the message 𝑚.

Key exchange protocol
We give a protocol for the key exchange of a permutation using a latin square.
A man in the middle can only access the whole key if both directions of the key
communication are attacked.

𝐴𝑙𝑖𝑐𝑒 𝐵𝑜𝑏

1. Choose 𝐼1 ⊆ {1, . . . , 𝑛}
2. Choose | 𝐼1 | permutations of
𝑆𝑛 such that they are the first
| 𝐼1 | rows of a latin square
3. Send 𝜎1, . . . , 𝜎|𝐼1| to Bob

𝜎1,...,𝜎|𝐼1|−−−−−−−→
4. Determine the first | 𝐼1 | positions
of the column permuations 𝜏1, . . . , 𝜏𝑛

5. Extend each one to permutations
of 𝑆𝑛 such that they are columns of a
latin square

6. Choose 𝐼2 ⊆ {1, . . . , 𝑛}
7. Compute 𝜌⋆ =

∏︀
𝑖∈𝐼2

𝜏𝑖

𝜌⋆

←− 8. Send this permutation to Alice
9. Compute the key 9. Compute the key
𝜌 =

∏︀
𝑖∈𝐼1

𝜎𝑖 · 𝜌⋆ 𝜌 =
∏︀

𝑖∈𝐼1
𝜎𝑖 · 𝜌⋆

Security analysis
Let’s assume that the attacker penetrated one direction of key communications
and get the permutations 𝜎1, . . . , 𝜎|𝐼1| or 𝜌⋆. It has to compute the other direction
permutations to get 𝜌, i.e. it must be able to find the used latin square in order to
determine the other permutations, or can guess a permutation on 𝑛 elements. Since
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𝜌 ∈ 𝑆𝑛, the number of permutations for 𝑛 elements is 𝑛!, so an algorithm to produce
all 𝑛! permutations would have time complexity 𝑂(𝑛!). We direct the reader for
some literature about these algorithms to [3], [2] and [1]. It’s quite easy to see that
the factorial is approximately exponential in behaviour. a factorial algorithm may
be practical in a few special cases. i.e. where 𝑛 is extremely small, but becomes
impractical very quickly as 𝑛 grows. The time complexity of multiplication of two
permutations ∈ 𝑂(𝑛), which means the time required to multiply 𝑛 permutations
is 𝑂(𝑛2), thus we have the time complexity is 𝑂(𝑛2 * 𝑛!). So if we choose 𝑛 large
enough, the ability to compute 𝜌 even the attacker got 𝜎1, . . . , 𝜎|𝐼1| or 𝜌⋆ will be
not possible.
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