ICAI 2023
12" International Conference on Applied Informatics
Eger, Hungary, 2023

Visualization for Read-Copy-Update
Synchronization Contexts in C Code

Endre Fiilop®, Attila Gyén®, Norbert Pataki®

“Department of Programming Languages and Compilers
Eotvos Lorand University
gamesh411@gmail.com, gyenattila@gmail.com, patakino@elte.hu

Abstract

The Read-Copy-Update (RCU) mechanism is a way of synchronizing concurrent
access to variables with the goal of prioritizing read performance over strict con-
sistency guarantees [4]. The main idea behind this mechanism is that RCU avoids
the use of lock primitives while multiple threads try to read and update elements
concurrently. In this case, elements are linked together through pointers in a shared
data structure. RCU is used in the Linux kernel, but there are user-space libraries
which implement the technique as well [3]. One of the user-space solutions is librcu
that is a C language library [1].

Our earlied work developed a code comprehension framework for the RCU syn-
chronization contexts [2]. We have developed a static analysis solution based on
the Clang compiler. Our static analysis tool takes advantage of the LLVM IR
(Intermediate Representation) which is generated from the source code.

For context detection, the iterative algorithm of forward dataflow analyses uses
reverse postorder traversal of the control-flow graph (CFG) elements in case of
forward analysis in order for performance reasons. This results in a scalable method
for gaining an overview about the synchronization aspects of the software. The
modular nature of the approach lends itself to distributed use.

The transfer function saves the interesting locations (the instructions that can
be used to get the locations), by appending them to the basic block level global
fact, but only if this global fact is does not already contain them. In addition, if
a context ending API call is detected, the exit state of the instruction set to the
current global state of the basic block. The reverse postorder visitation guarantees,
if a context starting instruction then happens to precede a context ending one, there


mailto:gamesh411@gmail.com
mailto:gyenattila@gmail.com
mailto:patakino@elte.hu

ICAI 2023 Abstract

is path in the CFG from the starter to the ending one. The set-like nature of the
list in turn allows for the halting of the fixed-point algorithm in finite steps, as
there are a finite amount of interesting locations inside a program.

The meet function is responsible for merging the exit states of multiple incoming
dataflow facts. This is defined as the concatenation of the dataflow fact lists in a
manner, that guarantees uniqueness of elements inside the resulting list, and the
preservation of relative ordering among the interesting locations.

Monaco Editor is maintained by Microsoft and available worldwide for free
[5]. Figure 1 shows its default appearance. Monaco has a playground with full of
interactive examples and provides wide access to the editor and it supports feature
like colorize the editor line-by-line, add different error and warning messages or
add a hover message when the cursor is hovered over the text. Doing all this
with JavaScript programming language for the dynamic parts, CSS for styling
and HTML to build the raw frame. It gives full access to the Document Object
Model (DOM) supplemented by its own special elements. However, it sets up some
limitations.

n e e O e o]

&« C ® © (O localhost:8080/monaco-editor/test/#sample - typescr se* w mn eo e =
1 /* Game of Life
2 * Implemented in TypeScript
3 % To learn more about TypeScript, please visit http://www.typescriptlang.org/
4 */
5
6 namespace Conway {
7
) export class Cell {
public row: number;
10 public col: number;
11 public live: boolean;
12
13 constructor(row: number, col: number, live: boolean) {
14 this.row = row;
15 this.col = col;
16 this.live = live;
17 window.
18 ¥ @ addEventListener (method) addEventListen..
19 } @ alert
20 & applicationCache
21 export class Gam (@ atob
22 private grid(e] AbortController
23 private canv[e] AbortSignal
24 private line(e] AbstractRange
25 private live[e] ActiveXObject

[@] AggregateError
(@] AnalyserNode

[@] Animation

(] AnimationEffect

Figure 1. Monaco Editor

In this paper, we present our visualization techniques and methods for RCU
contexts in the Microsoft’s Monaco Editor. We cover many aspects of this style
of concurrency for an improved code comprehension. We present how to visualize
the read/write locks and contexts. This approach can help the developers to find



ICAI 2023 Abstract

bugs in the code without its execution. We show how the shared variables can be
highlighted in this paradigm. The proposed visualization and its implementation
details are demonstrated.

References

[1] M. DESNOYERS, P. E. MCKENNEY: Userspace RCU, https://liburcu.org/.

[2] E. FOLOP, A. GYEN, N. PATAKL: Code Comprehension for Read-Copy-Update Synchronization
Contexts in C Code, in: Geoinformatics and Data Analysis, ed. by S. BOURENNANE, P. Ku-
BICEK, Cham: Springer International Publishing, 2022, pp. 187—200, 1SBN: 978-3-031-08017-3.

[3] G. MARTON, I. SZEKERES, Z. PORKOLAB: Towards a High-level C++ Abstraction To Utilize
The Read-Copy-Update Pattern, Acta Electrotechnica et Informatica 18.3 (2018), pp. 18-26,
DOI: 0.15546/aeei-2018-0021.

[4] P. E. MCKENNEY, J. WALPOLE: What is RCU, fundamentally?, 2007, URL: https://lwn.net
/Articles/262464/.

[5] MICROSOFT: Monaco Editor, https://microsoft.github.io/monaco-editor/.


0.15546/aeei-2018-0021
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/

