
ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary, 2023

Improper Input Validation Vulnerability
Detection by Static Analysis∗

Alqaradaghi Midyaab, Kozsik Tamásc

aELTE Eötvös Loránd University
alqaradaghi.midya@inf.elte.hu

bNorthern Technical University
midya.azad@ntu.edu.iq

cELTE Eötvös Loránd University
kto@inf.elte.hu

Abstract

Web applications have become a vital element of our everyday lives. Because they
contain valuable and sensitive information, hackers attempt to identify and exploit
vulnerabilities to deceive the user, steal data, or destroy the application.

Improper input validation (IIV) [6], also known as unchecked user input, is a
type of computer software vulnerability that can lead to security feats. It occurs
when a product fails to validate or incorrectly validates input that can affect a
program’s control flow or data flow. IIV is one of the most prevalent and high-risk
vulnerabilities to this day. This vulnerability has been in the CWE Top 25 for the
previous four years [9], under the ID CWE20. It is also the root cause of more
than half of the Top 10 Web Application Security Risks list [10] such as Cross-site
Scripting [7], Command Injections [5], and HTTP Response Splitting [8].

Static analysis techniques are used to find programming errors and code viola-
tions, including IIV, without running the programs. Nevertheless, static analysis
can be used effectively in the early stages of software development. SpotBugs is
an open-source and free static analysis tool [4]. Along with its plug-in for security
audits of Java web applications, Find Security Bugs (FSB) [3], they both had a
high performance in identifying different programming violations [1]. Moreover,
FSB has eight checkers that target IIV vulnerabilities in Java source code.

∗The Stipendium Hungaricum scholarship supported this research

1

mailto:alqaradaghi.midya@inf.elte.hu
mailto:midya.azad@ntu.edu.iq
mailto:kto@inf.elte.hu


ICAI 2023 Abstract

Even though IIV is easy to detect and fix, it still occurs frequently in prac-
tice [2]. This study is an investigation of IIV vulnerability existence in recent
open-source Java web server applications and the effectiveness of existing static
analysis techniques in detecting it.

The research questions are:

1. How frequently do recent web-server applications include IIV vulnerability?

2. How effective do recent free and open-source static analyses identifying this
vulnerability?

3. How to improve the vulnerability detection rate (Recall)?

To answer the first question, we manually reviewed three web-server appli-
cations and checked if they contained IIV vulnerabilities, then documented the
number and type of each one. By doing this, we get the total number of IIV in the
applications.

To answer the second question, we analyzed the same applications using FSB.
We considered recall (also called detection rate) 1 as the basis for the analysis
efficiency.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1)

Where TP: true positive (IIV found by FSB). FN: false negative (number of
IIV that FSB has missed). The denominator TP+FN: is (IIV found by manual
review).

Table 1 shows the number and types of IIV vulnerabilities found by manual
review and FSB in this study’s analyzed applications (APP), along with the recall
value for each. From the table, we can see that FSB could not detect specific types
of IIV vulnerability resulting in recall values of 0.46, 0.74, and 0.63 for the analyzed
applications, respectively.

Now we can answer the last question of this study. For improving the vulner-
ability detection rate, the static analysis should consider detecting more ranges of
invalidated inputs, precisely those types that have been missed by the FSB tool;
input from buffered readers, and session cookie values.

To conclude, the primary results of this study show that FSB could only identify
37% of the existing IIV vulnerabilities in the analyzed Java applications, meaning
it was ineffective in that aspect. Static analysis should consider the buffered reader
and session cookies value input types when looking for IIV vulnerability in Java
source code.

References
[1] M. Alqaradaghi, G. Morse, T. Kozsik: Detecting security vulnerabilities with static anal-

ysis – a case study, Pollack Periodica 17.2 (2021), doi: 10.1556/606.2021.00454.

2

10.1556/606.2021.00454


ICAI 2023 Abstract

Table 1. Number and types of IIV vulnerabilities found by both
manual review and FSB tool along with the value of recall for FSB

tool when analyzed each application.

APP ID IIV found by manual review IIV found by FSB Recall
1 1 (buffered reader) 3 (query string) 0.46

4 (query string) 4* (servlet parameter)
3 (servlet parameter)

5 (session cookie value)
2 1 (reading a buffered reader) 9* (query string) 0.74

3 (query string) 1 (session cookie value)
12 (servlet parameter) 10 (servlet parameter)
3 (session cookie value)

3 1 (buffered reader) 3 (query string) 0.63
3 (query string) 2 (servlet parameter)

4 (servlet parameter)
Total 40 25 0.63

[2] L. Braz, E. Fregnan, G. Çalikli, A. Bacchelli: Why Don’t Developers Detect Improper
Input Validation?’; DROP TABLE Papers;–, in: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), IEEE, 2021, pp. 499–511.

[3] F. S. Bugs: An extensible cross-language static code analyzer. https://pmd.github.io/.,
Accessed: December 2022.

[4] SpotBugs: Find Bugs in Java Programs, https://spotbugs.github.io/, Accessed: Decem-
ber 2022.

[5] The MITRE Corporation: Command Injection, https://cwe.mitre.org/data/definiti
ons/78.html, Accessed: December 2022.

[6] The MITRE Corporation: CWE20 Improper Input Validation, https://cwe.mitre.org
/data/definitions/20.html, Accessed: December 2022.

[7] The MITRE Corporation: CWE79 Improper Neutralization of Input During Web Page
Generation (’Cross-site Scripting’), https://cwe.mitre.org/data/definitions/79.html,
Accessed: December 2022.

[8] The MITRE Corporation: HTTP Response Splitting, https://owasp.org/www-communit
y/attacks/HTTP_Response_Splitting, Accessed: December 2022.

[9] The MITRE Corporation: Top 25 Most Dangerous Software Weaknesses, https://cwe.m
itre.org/data/definitions/1387.html, Accessed: December 2022.

[10] The MITRE Corporation: Top Ten Web Application Security Risks, https://owasp.org
/www-project-top-ten/, Accessed: December 2022.

3

https://pmd.github.io/.
https://spotbugs.github.io/
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://cwe.mitre.org/data/definitions/1387.html
https://cwe.mitre.org/data/definitions/1387.html
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

