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Abstract

The aim of network theory is to describe real life networks like social networks
(Facebook, Twitter,...), communication networks (WWW, Internet,...), non-artificial
neural networks, brain connectome, power grid, trade networks, etc. A mathemat-
ical model for a network is a random graph. A pioneering paper in network theory
is the paper [3] by Barabási and Albert and a general description is the book of
Barabási [2].

In this paper, we present a new continuous time network evolution model driven
by a branching process. There are several papers on this approach, like [1] by
Athreya, Ghosh and Sethuraman and the paper [7] by Móri and Rokob. In our
former paper [5] we studied network evolution based on 3-cliques, while in [4]
evolution based on 2- and 3-cliques. In the recent paper we continue the lines of
[7], [5] and [4].

Now, we outline the structure of our model. The basic units are teams. Every
team attracts new incomers. Teams are represented by cliques. The clique size can
be 1, 2, . . . , 𝑁 , where 𝑁 is a fixed integer. At the initial time 𝑡 = 0, we start with
a single team, it can be any 𝑛-clique, 1 ≤ 𝑛 ≤ 𝑁 . It is called the ancestor.

At certain random time a new member, i.e. a new node joins to the ancestor.
So a new clique appears. Then the new clique also attracts a new member, that
is a new node. So again a new clique appears and it starts its own reproduction
process.

The reproduction steps of any fixed 𝑛-clique is the following. The generic 𝑛-
clique has its own Poisson process Π𝑛(𝑡) with parameter 1. When the Poisson
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process jumps, then a new vertex appears and it is connected to our generic 𝑛-
clique. The new vertex will be connected to certain vertices of the generic 𝑛-clique.
The probability that the new vertex will be connected to 𝑗 vertices of the generic
𝑛-clique is 𝑝𝑛,𝑗 , where 0 ≤ 𝑝𝑛,𝑗 ≤ 1, 𝑗 = 0, 1, . . . , 𝑛 and

∑︀𝑛
𝑗=0 𝑝𝑛,𝑗 = 1. The 𝑗 end

points of the 𝑗 new edges are chosen uniformly at random from the vertices of the
generic 𝑛-clique.

Now, the 𝑗 old connected vertices chosen, the new vertex and the 𝑗 new edges
form a (𝑗 + 1)-clique. This new (𝑗 + 1)-clique is a child of the generic 𝑛-clique and
it is the only child at this step.

We see that any birth time the generic 𝑛-clique produces precisely one child.
If 𝑗 = 0, then this child is just one vertex. If 𝑗 = 1, then this child is an edge. If
𝑗 = 2, then this child is a triangle. If 𝑗 = 𝑛 < 𝑁 , then this child is an (𝑛+1)-clique.
We underline, that we do not allow the birth of an (𝑁 + 1)-clique.

The ancestor clique, the children cliques of the ancestor, the grandchildren
cliques, etc. form an evolving network. When a clique dies, we do not delete it,
but we consider it as a non-active individual not producing offspring.

An offspring 𝑗-clique is an individual of type 𝑗, so we shall denote it by subscript
𝑗. We shall denote by 𝜉𝑖,𝑗(𝑡) the number of type 𝑗 offspring of the type 𝑖 generic
object up to time 𝑡 (𝑖, 𝑗 = 1, 2, . . . , 𝑁). Then

𝜉𝑖(𝑡) =
𝑖+1∑︁
𝑗=1

𝜉𝑖,𝑗(𝑡) (1)

is the number of all offspring of the generic 𝑖-clique up to time 𝑡.
Let 𝜆𝑖 be the (random) life-length of the generic 𝑖-clique. We assume that the

hazard rate of 𝜆𝑖 depends on the total number of offspring, so that

𝑙𝑖(𝑡) = 𝑏 + 𝑐𝜉𝑖(𝑡)

with positive constants 𝑏 and 𝑐. We can show that the survival function for an
𝑖-clique is

𝑃 (𝜆𝑖 > 𝑡) = 𝑒−𝑡(𝑏+1)𝑒
1−𝑒−𝑐𝑡

𝑐 .

We can calculate the mean offspring number, that is 𝑚𝑖,𝑗(𝑡) = 𝐸𝜉𝑖,𝑗(𝑡) the
expectation of the number of type 𝑗 offspring of a type 𝑖 team until time 𝑡.

To obtain asymptotic results, we suppose that our branching process is super-
critical and satisfies some other reasonable conditions.

We obtain several limit theorems having the following shape.
Let 𝑛 be fixed, 1 ≤ 𝑛 ≤ 𝑁 . Let 𝑘𝑇 (𝑡) denote the number of all 𝑛-cliques being

born up to time 𝑡 if the ancestor of the population was a 𝑘-clique, 𝑘 = 1, . . . , 𝑁 .
Then

lim
𝑡→∞

𝑒−𝛼𝑡
𝑘𝑇 (𝑡) = 𝑘𝑊

𝑣𝑘𝑢𝑛

𝛼𝐷(𝛼)

almost surely for 𝑘 = 1, . . . , 𝑁 , where 𝑣𝑘, 𝑢𝑛, and 𝐷(𝛼) are non-random and they
are given by the parameters of the process, 𝑘𝑊 is an almost surely non-negative
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random variable, 𝐸𝑘𝑊 = 1, 𝑘𝑊 is a.s. positive on the event when the total number
of offspring converges to infinity.

The proofs are based on known results of multi-type branching processes, see
e.g. [6].

The mathematical theorems are supported by computer simulations, too.
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Figure 1. A simulation example of network growth with 𝑁 = 5.

Figure 1 shows the number of 𝑛-cliques being born, 𝑛 = 1, 2, . . . , 5. The dashed
line shows the theoretical slope.
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