
ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary, 2023

An Incremental Algorithm for Computing
the Transversal Hypergraph

Laszlo Szathmary

University of Debrecen, Faculty of Informatics
H-4002 Debrecen, Pf. 400, Hungary
szathmary.laszlo@inf.unideb.hu

Abstract
In this paper we present an incremental algorithm for computing the transversal
hypergraph. Our algorithm is an optimized version of Berge’s algorithm [1] for
solving the transversal hypergraph problem. The original algorithm of Berge is
the simplest and most direct scheme for generating all minimal transversals of a
hypergraph. Here we present an optimized version of Berge’s algorithm that we
call BergeOpt. We show that BergeOpt can significantly reduce the number of
expensive inclusion tests. Experimental results show that BergeOpt outperforms
the original algorithm of Berge.

Basic Concepts of Hypergraphs

In this subsection we mainly rely on [2]. Hypergraph theory [1] is an important
field of discrete mathematics with many relevant applications in applied computer
science. A hypergraph is a generalization of a graph, where edges can connect
arbitrary number of vertices. Formally:
Definition 1 (hypergraph). A hypergraph is a pair (𝑉 ,ℰ) of a finite set 𝑉 =
{𝑣1, 𝑣2, . . . , 𝑣𝑛} and a family ℰ of subsets of 𝑉 . The elements of 𝑉 are called
vertices, the elements of ℰ edges.
Note that some authors, e.g. [1], state that the edge-set as well as each edge must
be non-empty and that the union of all edges results in the vertex set.
Definition 2 (partial hypergraph). Let ℋ = {ℰ1, ℰ2, . . . , ℰ𝑚} be a hypergraph.
The partial hypergraph ℋ𝑖 of ℋ (𝑖 = 1, . . . , 𝑛) is the hypergraph that contains the
first 𝑖 edges of ℋ, i.e. ℋ𝑖 = {ℰ1, . . . , ℰ𝑖}.
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Figure 1. A sample hypergraph ℋ, where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and
ℰ = {{𝑎}, {𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}}.

A hypergraph is simple if none of its edges is contained in any other of its edges.
Formally:

Definition 3 (simple hypergraph). A hypergraph is called simple if it satisfies
∀ℰ𝑖, ℰ𝑗 ∈ ℰ : ℰ𝑖 ⊆ ℰ𝑗 ⇒ 𝑖 = 𝑗.

Example. The hypergraph ℋ in Figure 1 is not simple because the edge {𝑎}
is contained in the edge {𝑎, 𝑐, 𝑑}.

Definition 4. Let ℋ = (𝑉, ℰ) be a hypergraph. Then min(ℋ) denotes the set of
minimal edges of ℋ w.r.t. set inclusion, i.e. min(ℋ) = {𝐸 ∈ ℰ | ∄𝐸′ ∈ ℰ : 𝐸′ ⊂
𝐸}, and max(ℋ) denotes the set of maximal edges of ℋ w.r.t. set inclusion, i.e.
max(ℋ) = {𝐸 ∈ ℰ | ∄𝐸′ ∈ ℰ : 𝐸′ ⊃ 𝐸}.

Clearly, for any hypergraph ℋ, min(ℋ) and max(ℋ) are simple hypergraphs.
Moreover, every partial hypergraph of a simple hypergraph is simple, too.

Example. In the case of hypergraph ℋ in Figure 1, min(ℋ) = {{𝑎}, {𝑏, 𝑐}} and
max(ℋ) = {{𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}}.

The problem that is of high interest for us concerns hypergraph transversals. A
transversal of a hypergraph ℋ is a subset of the vertex set of ℋ which intersects
each edge of ℋ. A transversal is minimal if it does not contain any transversal as
proper subset. Formally:

Definition 5 (transversal). Let ℋ = (𝑉, ℰ) be a hypergraph. A set 𝑇 ⊆ 𝑉 is
called a transversal of ℋ if it meets all edges of ℋ, i.e. ∀𝐸 ∈ ℰ : 𝑇 ∩ 𝐸 ̸= ∅. A
transversal 𝑇 is called minimal if no proper subset 𝑇 ′ of 𝑇 is a transversal.

Note that Pfaltz and Jamison call transversal (resp. minimal transversal) as
blocker (resp. minimal blocker) in [5]. Outside hypergraph theory, a transversal is
usually called a hitting set.

Example. The hypergraph ℋ in Figure 1 has two minimal transversals: {𝑎, 𝑏}
and {𝑎, 𝑐}. For instance, the sets {𝑎, 𝑏, 𝑐} and {𝑎, 𝑐, 𝑑} are transversals but they
are not minimal.
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Definition 6 (transversal hypergraph). The family of all minimal transversals of
ℋ constitutes a simple hypergraph on 𝑉 called the transversal hypergraph of ℋ,
which is denoted by 𝑇𝑟(ℋ).

Example. Considering the hypergraph ℋ in Figure 1, 𝑇𝑟(ℋ) = {{𝑎, 𝑏}, {𝑎, 𝑐}}.

The Algorithm of Berge

The Algorithm of Berge is the most simple and direct scheme for generating all
minimal transversals of a hypergraph. The algorithm starts with the computa-
tion of 𝑇𝑟(ℋ1), which is a trivial case (ℋ1 has one edge only, ℰ1, whose minimal
transversals are its vertices). Then, the algorithm adds one by one the rest of the
edges, computing at each step the set of minimal transversals of the new partial
hypergraph. At each step, non-minimal elements are removed. The algorithm ter-
minates when the last edge ℰ𝑛 is added. The algorithm of Berge outputs at the
end all minimal transversals of the input hypergraph ℋ [1].

BergeOpt: An Optimized Version of Berge’s Algorithm

In [4], Le Floc’h et al. presented an algorithm called JEN whose goal is to efficiently
extract generators from a concept lattice [3] for mining exact and approximate as-
sociation rules. As part of JEN, the aforementioned authors presented a simple
algorithm without a name for calculating all the minimal transversals of a hyper-
graph. Our algorithm is an extended and completed version of this algorithm.
In addition to [4], (i) we show that this algorithm is actually an optimization
of Berge’s original algorithm (hence the name BergeOpt), and (ii) we provide a
proposition and its proof.
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