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Abstract

"

"One can FT anything—often meaningfully.
—John W. Tukey [1]

In this paper we show the usefulness of EMD for detecting the trend and major
frequencies for a nonlinear and non-stationary signal in case of a data set of irregu-
larities in track geometry. The observations in everyday practice are neither linear
nor stationary. In case the nonlinear model is a priori known then it is used for
the further study otherwise some preliminary transformations can be applied for
approximation to either linearity or stationarity or both. A frequently used trans-
formation is the seasonal-trend (polynomial) decomposition which makes possible
of usage ARIMA models, see Figure la. One can also use change point detection
for the data and get rid of different means, variances etc. between change points
Figure 1b.
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(a) Red wine sales. (b) Change points and trend.

Figure 1

Measurement, Hilbert transform, EMD and Trend

We consider a series of measurements which concerns to the problem of charac-
terizing of irregularities in track geometry. The data has been produced by a
comprehensive track recording vehicle. The irregularity of the track gauge and the
alignments of the right and left rails has been measured with the sampling interval
of 0.25m along the track, see [2] for details. In this work we consider the measure-
ment according to the right alignment with sample size 23,601. The Hungarian
National Standard defines classes D1-3 with wavelength range 3m-200m, here the
Class D1 with wavelength range 3m-25m is investigated for information on the
wavelength and local distribution of the geometry faults. We address two basic
issues: One is separate the trend and the random part of the signal. The other one
is to find the characteristic wave lengths for different track sections.

The basic method is the Hilbert Transform (HT), [3]. The HT maps the
temporal-space data to time-frequency space, where both the amplitudes and fre-
quencies depend on time as well. The marginal Hilbert spectrum can be computed
from the Hilbert spectrum, it collects the total amplitude contribution to each
frequency value.

The Empirical Mode Decomposition (EMD) is a data-driven auto-adaptive
method, which decomposes signals into components referred to as Intrinsic Mode
Functions (IMF) and a residual. In our calculations we apply the most popular
version which is implemented in MATLAB, see [4]. The IMFs fluctuate around
zero. The only non-zero mean component is the remaining residual, see Fig-
ure 2a. The Hilbert spectrum Hy(w,t) of an IMF wy(t) = Ag(t) cos(¢(t)), where
w(t) = do(t)/dt, is defined by Hy(w,t) = 0 except Hi(w(t),t) = Ag(t), see Fig-
ure 2b. We apply the methodology of [5] for the separation the trend from the
signal, see Figure 3.
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(a) Decomposition of the signal. (b) Hilbert spectrum of the first IMF.

Figure 2. IMF

Figure 3. The measured signal and the trend.
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