
ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary, 2023

P4 Specific Refactoring Steps∗

Máté Tejfel, Dániel Lukács, Péter Hegyi

Faculty of Informatics
Eötvös Loránd University, ELTE

Budapest, Hungary
matej@inf.elte.hu, dlukacs@inf.elte.hu, immsrb@inf.elte.hu

Abstract

P4 [1] is a domain-specific programming language for programmable switches run-
ning inside next-generation computer networks. The language is designed to use
the software-defined networking (SDN) paradigm [5] which separates the data plane
and the control plane layers of the program. P4 focuses on the data plane, while we
need some other tool to create the control plane. It facilitates the implementation
of the concept of fully programmable networks making possible the development
of programmable data planes.

This paper introduces certain tool-supported refactoring steps for P4 with two-
fold objectives. On the one hand, we aim to assist developers to take full advantage
of the programmability of P4, by providing standard refactoring services commonly
found in IDEs of modern high-level languages. On the other hand, we want to
enable P4 code optimizations that are aware of the unique make-up of this language.

The challenge in this task is that P4 has special domain-specific constructs that
cannot be found in other languages and as such there is no existing methodology yet
for refactoring these constructs. One of the most important part of the execution
of a P4 program is the application of the match/action tables. The program can
modify the incoming packets (namely the headers) by applying the tables. For
a given program, determining the optimal table structure is a difficult task. It
can often be the case that in a given hardware environment using fewer but larger

∗The research has been supported by the project "Application Domain Specific Highly Reliable
IT Solutions" implemented with the support of the NRDI Fund of Hungary, financed under
the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Sub programme)
funding scheme.
This research is in part supported by the project no. FK_21 138949, provided by the National
Research, Development and Innovation Fund of Hungary.

1

mailto:matej@inf.elte.hu
mailto:dlukacs@inf.elte.hu
mailto:immsrb@inf.elte.hu


ICAI 2023 Abstract

Table 1. Vertical splitting

src_addr dst_addr action
1 1 𝑖𝑝𝑣4_𝑓𝑜𝑟𝑤𝑎𝑟𝑑

1 2 𝑖𝑝𝑣4_𝑓𝑜𝑟𝑤𝑎𝑟𝑑

1 3 𝑑𝑟𝑜𝑝

2 1 𝑑𝑟𝑜𝑝

2 2 𝑚𝑜𝑑𝑖𝑓𝑦_𝑑𝑠𝑡

3 1 𝑚𝑜𝑑𝑖𝑓𝑦_𝑑𝑠𝑡

(a) Table before vertical splitting

src_addr action
1 case1

2 case2

3 case3

(b) Vertical dispenser

executor1
dst_addr action

1 𝑖𝑝𝑣4_𝑓𝑜𝑟𝑤𝑎𝑟𝑑
2 𝑖𝑝𝑣4_𝑓𝑜𝑟𝑤𝑎𝑟𝑑
3 𝑑𝑟𝑜𝑝

executor2
dst_addr action

1 𝑑𝑟𝑜𝑝
2 𝑚𝑜𝑑𝑖𝑓𝑦_𝑑𝑠𝑡

executor3
dst_addr action

1 𝑚𝑜𝑑𝑖𝑓𝑦_𝑑𝑠𝑡

(c) Executor tables

tables, while in another environment using more but smaller tables may yield better
results. Therefore our implemented refactorings mainly focus on the modification of
the match/action tables, namely horizontal and vertical splitting of tables, merging
tables, changing the execution order of tables.

Table 1 illustrates vertical splitting. The parameter of the operation is a value
set which determine the likely values of the first key part which can appear in the
table. Using this set we can split the original table (1a) in such a way that first
we just lookup the first key part in the determined set (1b) and then lookup the
second key part in independent tables (1c).

The introduced refactorings were realized with P4Query [3], a static analysis
framework for P4. However P4Query was originally designed with code discovery in
mind rather than code transformation. As such, one of the issues a refactoring step
has to address is keeping the database in a consistent state. Our current solution
applies generic consistency checks after the execution of the refactoring steps for the
internal graph to address this problem. Illustrating generality of our approach in
addition to these steps, we have implemented some more general (not P4 specific)
transformation steps (e.g. parameter renaming and magic number replacing) too.
In the case of every refactoring we have also defined the prerequisites needed for
the safe execution of the steps.

Considering related work P4 refactorings can be particularly useful for data-
plane disaggregation, a problem recently addressed by Flightplan [6]. The objec-
tive here is to optimally segment P4 programs so that individual program segments
can be assigned to different hardware resources. Another potential application for
P4 refactorings can be the decomposition of large match/action tables containing
significant amount of redundancy (due to dependencies between their fields) into
smaller, irredundant tables using the approach introduced by Németh et al. [4].
On many targets decomposition leads to better efficiency, because smaller, simpler
tables can be updated by the controller with less work, and because it is easier
for compilers to find optimal representations for simpler tables. Our current ap-

2



ICAI 2023 Abstract

proach to refactoring P4 using P4Query was mostly inspired by RefactorErl [2],
a similar, but more established static analysis tool for Erlang, also developed at
ELTE. A key idea in this tool is that persisting pre-calculated semantic informa-
tion in a database can both simplify and speed up refactorings. This also enables
incremental refactorings where syntactical changes automatically trigger semantic
analysis.

In the future using the approach introduced by the paper we plan to implement
further, more complex refactoring steps and to extend currently applied consistency
checks with more specific verification methods.

References
[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, D. Walker: P4: Programming Protocol-independent
Packet Processors, SIGCOMM Comput. Commun. Rev. 44.3 (July 2014), pp. 87–95, issn:
0146-4833, doi: 10.1145/2656877.2656890, url: http://doi.acm.org/10.1145/2656877.265
6890.

[2] Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, M. Tóth, I. Bozó, R. Király: Modeling
semantic knowledge in Erlang for refactoring, in: International Conference on Knowledge
Engineering, Principles and Techniques (KEPT), Cluj-Napoca, Romania, July 2009, pp. 38–
53.

[3] D. Lukács, G. Tóth, M. Tejfel: P4Query: Static Analyser Framework for P4, Annales
Mathematicae et Informaticae. Liceum University Press, Eszterházy Károly University, Eger,
Hungary. [Submitted in 2022, under second round review].

[4] F. Németh, M. Chiesa, G. Rétvári: Normal Forms for Match-Action Programs, in: Pro-
ceedings of the 15th International Conference on Emerging Networking Experiments And
Technologies, CoNEXT ’19, Orlando, Florida: Association for Computing Machinery, 2019,
pp. 44–50, isbn: 9781450369985, doi: 10.1145/3359989.3365417, url: https://doi.org/10
.1145/3359989.3365417.

[5] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti: A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable Networks, IEEE
Communications Surveys and Tutorials 16.3 (2014), pp. 1617–1634, doi: 10.1109/SURV.2014
.012214.00180.

[6] N. Sultana, et al.: Flightplan: Dataplane Disaggregation and Placement for P4 Programs,
in: 18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021, ed. by J. Mickens, R. Teixeira, USENIX Association, 2021, pp. 571–592,
url: https://www.usenix.org/conference/nsdi21/presentation/sultana.

3

10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
10.1145/3359989.3365417
https://doi.org/10.1145/3359989.3365417
https://doi.org/10.1145/3359989.3365417
10.1109/SURV.2014.012214.00180
10.1109/SURV.2014.012214.00180
https://www.usenix.org/conference/nsdi21/presentation/sultana

