
ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary, 2023

A Survey of Dataflow Analyses in Clang

Kristóf Umann, Zoltán Porkoláb

ELTE, Eötvös Lóránd University, Budapest, Hungary. Faculty of Informatics,
Department of Programming Languages and Compilers

szelethus@inf.elte.hu, gsd@inf.elte.hu

Abstract
Despite Clang being one of the most popular compilers for the C family of lan-
guages, it once was surprisingly unfriendly towards dataflow analyses. As it turns
out, there are infrastructural barriers from implementing them as easily as it is for
its backend, LLVM. While this appears to be changing, the cumbersome implemene-
tation of the few dataflow algorithms that were in Clang present an interesting case
study. This paper presents their struggles and clever solutions.

1. Introduction
Even basic optimizations demand the use of some data flow algorithms, making
them a rather fundamental element of compiler design. Despite this, Clang is rather
unfriendly towards implementing them. This is partly due to Clang’s infrastructure
design – it is not a standalone tool, but rather the frontend compiler for the LLVM
backend compiler. While data flow analyses for optimizations are not a concern,
they are still a great asset for emitting diagnostics, meaning that there still is a
need for a sensible data flow infrastructure.

2. Obstacles
A common theme among data flow algorithms is looking for gens (generations, or
in other words “reads” or “loads”) or kills (in other words “writes” or “stores”) of
either variables or values. Under the term GEN [s] set or KILL[s] set, we mean
a set of variables generated, or killed at a given statement s. Similarly, these sets
can be defined on the domain of CFGBlocks (nodes of the control flow graph) –

1

mailto:szelethus@inf.elte.hu
mailto:gsd@inf.elte.hu


ICAI 2023 Abstract

GEN [B] is the set of variables generated by one of the statements in CFGBlock
B.

Many data flow analyses are defined with a fixpoint algorithm on GEN/KILL
sets. In literature, we assume that these sets are precalculated, but that is rarely
a case for Clang. Also, most data flow algorithms are defined and showcased on
either some simple pseudo code, or an instruction set in a three address form:
x <- y + z

This tells us that variables y and z are read, and x is written. This is a very
low level of representation that Clang’s AST can’t express this easily – The use of
a variable is denoted by the AST node DeclRefExprs, but that on its own does
not tell us whether the variable is read or written. [5, 7] all mention this a very
significant difficulty in Clang: only the surrounding context, and even that with
great difficulty can tell that. LLVM IR is largely void of this problem (it is similar
to in this regard to the code snippet above), but in [6] Chris Lattner provides a
lengthy reasoning why it would be next to impossible to lower to LLVM IR, conduct
analysis, but still produce diagnostics in the original source code. LLVM IR is still
tempting enough though that we have ongoing projects to get some use out of it
[2].

This poses another problem: in literature, transfer functions are responsible for
the flow of information through a statement. For liveness, the transfer function for
assignment statements like x = a; would tell that a should be added to a so called
liveness set, and x should be removed. In Clang however, we can not always define
the same rule for the same statement, since we need the context around the it.

On another note, suppose you need to conduct data flow analysis on the fol-
lowing code in clang, and need to identify variables in the code:
void A::foo(int u) {

int i;
this->a = 5;
S s;
s.a.b.x.z = 3;
s.a->get().b = 6;

}

The parameter and u and i are easily identifiable, as they are both funda-
mentally typed. Describing the implicit this parameter is also easy with Clang’s
toolset, but not when we are talking about fields. If an object is encapsulated in
another object, possibly multiple times, Clang’s toolset runs thin, and makes the
prospect of pointer analysis all the more difficult.

3. Conclusion
In our full paper, we discuss specific dataflow implementations: Liveness anal-
ysis [8], UninitializedVariables analysis, Thread Safety analysis [5] and Lifetime
analysis [3].

2



ICAI 2023 Abstract

[1, chapter 9.3] describes a dataflow analysis framework as follows: it is a
(D, V, ∧, F ) quadruple, where D is the direction of the dataflow, V is the lattice,
which includes the domain of the analysis, ∧ is the meet operator, F : V → V , a
family of transfer functions.

Out of these 4, we have D factored out [4], and F , if we regard statement visitors
as such. As for the other two, an agreement on the most efficient data structure
with a merge/intersect operation would tie things together. All dataflow algorithms
above need to manage sets for each statement in the CFG, and these sets are
usually created from one another. Even for bitvector analyses, such as Uninitialized
variables and thread safety, they implement their own custom container.

Support for the fields of a record are only supported by thread safety and
lifetime. In fact, thread safety implements a custom intermediate language for this
purpose.

For GEN/KILL analyses, such as liveness, uninitialized variables and reaching
definitions, it should be possible to factor a lot of knowledge out about what state-
ments read/write a variable. However, these analyses don’t always agree on what
is a GEN or KILL, so any attempt at refactoring must be configurable to some
extent.

As of the writing this paper, a new kind of dataflow analysis infrastructure is
being implemented in Clang – in our full paper, we intend to discuss how well does
it fulfill the hopes set out for it.

References
[1] A. V. Aho, R. Sethi, J. D. Ullman: Compilers principles, techniques, and tools, Reading,

MA: Addison-Wesley, 1986.
[2] A. Dergachev: Get info from the LLVM IR for precision, http://lists.llvm.org/piperma

il/cfe-dev/2020-August/066537.html, 2020, (visited on 07/21/2022).
[3] M. Gehre, G. Horváth: Implementing the C++ Core Guidelines’ Lifetime Safety Profile in

Clang, https://www.youtube.com/watch?v=VynWyOIb6Bk&ab_channel=LLVM, 2019, (visited on
07/21/2022).

[4] G. Horváth: Factor two worklist implementations out, https://reviews.llvm.org/D72380,
2020, (visited on 07/25/2022).

[5] D. Hutchins, A. Ballman, D. Sutherland: C/C++ Thread Safety Analysis, in: 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation, IEEE,
Sept. 2014, doi: 10.1109/scam.2014.34, url: https://doi.org/10.1109%2Fscam.2014.34.

[6] C. Lattner: LLVM Dev meeting: Slides & Minutes from the Static Analyzer BoF, https
://lists.llvm.org/pipermail/cfe- dev/2015- November/045872.html, 2015, (visited on
07/21/2022).

[7] C. Lattner, T. Shpeisman: MLIR: Multi-Level Intermediate Representation for Compiler
Infrastructure, https://www.youtube.com/watch?v=qzljG6DKgic&ab_channel=LLVM, 2019,
(visited on 07/21/2022).

[8] K. Umann: An in-depth look at Liveness Analysis in the Static Analyzer, https://lists.ll
vm.org/pipermail/cfe-dev/2020-July/066330.html, 2020, (visited on 07/21/2022).

3

http://lists.llvm.org/pipermail/cfe-dev/2020-August/066537.html
http://lists.llvm.org/pipermail/cfe-dev/2020-August/066537.html
https://www.youtube.com/watch?v=VynWyOIb6Bk&ab_channel=LLVM
https://reviews.llvm.org/D72380
10.1109/scam.2014.34
https://doi.org/10.1109%2Fscam.2014.34
https://lists.llvm.org/pipermail/cfe-dev/2015-November/045872.html
https://lists.llvm.org/pipermail/cfe-dev/2015-November/045872.html
https://www.youtube.com/watch?v=qzljG6DKgic&ab_channel=LLVM
https://lists.llvm.org/pipermail/cfe-dev/2020-July/066330.html
https://lists.llvm.org/pipermail/cfe-dev/2020-July/066330.html

