
ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary, 2023

Challenges in service discovery for
microservices deployed in a Kubernetes

cluster – a case study

Baasanjargal Erdenebata, Bayarjargal Budb, Tamás Kozsika

aDepartment of Programming Languages and Compilers,
ELTE Eötvös Loránd University, Budapest, Hungary

baasanjargal@inf.elte.hu, ORCID: 0000-0003-0471-7183
tamas.kozsik@elte.hu, ORCID: 0000-0003-4484-9172

bNational University of Mongolia
bud.bayarjargal@gmail.com

Abstract

As Kubernetes becomes one of the most wide-spread infrastructures of the cloud-
native era, its containerization possibilities and tools are gaining more and more
popularity. The main goal of this paper is to evaluate the service discovery mecha-
nisms and DNS management (CoreDNS) of Kubernetes, and to present an experi-
ment on service discovery challenges. In large scale Kubernetes clusters, the total
number of running pods, services, requests, and workloads can be high, and the
increased number of HTTP-requests often result in resource utilization concerns,
e.g., spikes of errors [2, 5]. The memory usage of Kubernetes DNS is predominantly
affected by the number of pods and services in the cluster [3, 4]. Other factors in-
clude the size of the filled DNS answer cache, and the rate of queries received per
CoreDNS instance [3].

In this paper, we investigate optimization possibilities with respect to perfor-
mance and scaling for CoreDNS in Kubernetes. We propose a new implementation
of plugins, which ensures the reliability of service discovery and DNS resolution
functionality. We introduce a solution for the CoreDNS concerns and elaborate
on the functionality of our implementation within service discovery. Experimental
results in a real-world case show that our solution for the CoreDNS ensures con-
sistency of the workload. Compared with the default CoreDNS configuration, our

1

mailto:baasanjargal@inf.elte.hu
mailto:tamas.kozsik@elte.hu
mailto:bud.bayarjargal@gmail.com


ICAI 2023 Abstract

Table 1. Measurement data

Pod/Service
count

Max
memory
(MB)

Max
CPU
(cores)

Average
response
time (sec)

Network load
Receive
(MB/sec)

Network load
Transmit
(MB/sec)

0 19 0.1 0.0008 0.0031 0.0047
250 776 2.74 0.67 1.48 2.55
1054 8914 5.27 4.02 2.70 4.66
2000 16664 9.14 8.19 3.75 6.12

customized approach achieves better performance in terms of number of errors for
requests, average latency of DNS requests, and resource usage rate.

When we first encountered resource consumption issues and a spike of errors,
we turned the configuration of CoreDNS [1] to troubleshooting and debugging the
main pain points. Our initial idea was to increase the number of replicas for the
application to see whether this improves the performance and reduces errors. As
we drilled down further with the application developer, we found that most of the
failures were related to DNS resolution. That is where we started to experiment
with the performance of DNS resolution in Kubernetes.

We have carried out a stress test on service discovery to identify bottlenecks and
issues. For our experiment, we used a cluster with one master and 10 worker nodes,
which were set up with the default settings of Kubernetes. We executed Java-
based front-end applications and microservices as Kubernetes pods and Kubernetes
services on that cluster.

The figures presented in Table 1 are based on data collected from the tests using
the following setup.

• Master node: n1-standard-1 (16 vCPU, 32 GB memory)

• Worker nodes: n1-standard-2 (32 vCPUs, 125 GB memory)

• Networking: calico-3.19.1

• Kubernetes Version: 1.21.3

• CoreDNS Version: 1.7.0

As shown in Table 1, resource consumption and network load drastically in-
creased when the total number of services and pods were raised. When over
1054 pods/services were running, the system consumed high amount of resources
such as up to 16 GB memory and 9 CPU cores. Average response time for 2000
pods/services was around 8.19 seconds, which resulted in high latency and increased
error rates. The CoreDNS function with default configuration occasionally crashed
when running 500 external services and pods in the Kubernetes cluster. After this
incident, we adjusted the memory resource “request/limit” in the CoreDNS de-
ployment up to 8 GB from 170 MB and increased the total number of instances to
four.

2



ICAI 2023 Abstract

It turned out that for the current challenges adding extra CoreDNS instances
or configuring HPA (Horizontal Pod Autoscaler) for the cluster based on number
of requests, resource consumption, and number of workloads running on the clus-
ter did not provide an appropriate solution, especially for large-scale clusters in
which numerous projects and environments were being developed simultaneously.
A specific solution was needed to properly address the concerns of request/response
latency, network load, spike errors, and resource consumption.

Our proposed solution is the following:

• development of a technique to automatically increase related resources based
on request frequency, and

• customize CoreDNS behavior by using specific plugins for addressing our
needs and requirements.

References
[1] CoreDNS: DNS and Service Discovery, https://coredns.io/, Accessed: 2023.
[2] A. Heidari, N. Jafari Navimipour: Service discovery mechanisms in cloud computing: a

comprehensive and systematic literature review, Kybernetes 51.3 (2022), pp. 952–981, doi:
https://doi.org/10.1108/K-12-2020-0909.

[3] Kubernetes: Using CoreDNS for Service Discovery, https://kubernetes.io/docs/tasks/a
dminister-cluster/coredns, Accessed: 2023.

[4] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, M. Parashar: Peer-to-Peer Cloud Pro-
visioning: Service Discovery and Load-Balancing, in: Cloud Computing: Principles, Systems
and Applications, ed. by N. Antonopoulos, L. Gillam, Springer London, 2010, pp. 195–217,
isbn: 978-1-84996-241-4, doi: https://doi.org/10.1007/978-1-84996-241-4_12.

[5] N. Singh, Y. Hamid, S. Juneja, G. Srivastava, G. Dhiman, T. Gadekallu, M. Shah:
Load balancing and service discovery using Docker Swarm for microservice based big data
applications, Journal of Cloud Computing 12 (2023), doi: https://doi.org/10.1186/s13677
-022-00358-7.

3

https://coredns.io/
https://doi.org/10.1108/K-12-2020-0909
https://kubernetes.io/docs/tasks/administer-cluster/coredns
https://kubernetes.io/docs/tasks/administer-cluster/coredns
https://doi.org/10.1007/978-1-84996-241-4_12
https://doi.org/10.1186/s13677-022-00358-7
https://doi.org/10.1186/s13677-022-00358-7

