
ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary, 2023

Program Code Quality Improvement by
using Design Patterns and Decision

Merging

Gábor Kusperab, Imre Bajákcd, Attila Adamkóbd, Szabolcs
Máriend

aEszterházy Károly Catholic University, Faculty of Informatics
bUniversity of Debrecen, Faculty of Informatics

cBudapest Business School
dInnovITech Kft.

Abstract

The aim of this paper is to present techniques about code quality improvement of
object-oriented programs when the source code contains redundant decisions. A
decision could be an IF statement, a SWITCH statement or a polymorphic method
call. Decisions are redundant when we repeat the same predicate check to decide
which behavior we shall perform. If we use a polymorphic method call, then there is
no predicate check, because the decision is made by late binding, so in this case we
have no redundancy. We show how to refactor IF and SWITCH statements by using
polymorphic method calls. We call such techniques decision merging in general.
Our examples come from the realm of design patterns [3]. First we show a code
which contains redundancy, then we apply some design pattern to improve the code.
We use the following ones: Adapter, Bridge, Builder, and Decorator. This means
that we present a set of before-after examples. This paper is the continuation of
[1], which discussed these 4 design patterns: Null Object, Template Method, State,
and Strategy.

We believe that these examples are valuable for those research groups which
work on automatic refactoring tools. They can use our examples to test their
solutions.

The code quality of object-oriented programs is an abstract notion, as a result

1



ICAI 2023 Abstract

it has a different meanings for different programmers. Meanwhile, clean code is a
kind of common sense and a well-documented notion [5]. The common sense for
OOP programmers is the following: the cleaner the code is, the better its quality
is. One of the criteria of clean code is not to repeat yourself, which is also known
as the DRY principle.

The other way to approach the notion of code quality, beside clean code, is to
use of code quality metrics. The easiest metric is LoC, which means the number of
lines in the code. The next one is the cyclomatic complexity (CC) metric, which
counts the linearly independent paths of a method. The less the value of CC is,
the easier it is to understand the method. Moreover, the less the value of CC is,
the easier it is to write unit tests for the method with 100% code coverage.

We improve the code quality by refactoring repeated predicate checks of IF and
SWITCH statements, which are usually called selections, or branching statements,
but we call them decisions in this paper. A decision selects from the possible
behaviors, and the running code performs the selected branch.

So, selection statements, like IF and SWITCH statements, are decisions, but a
polymorphic method call is also a decision. In case of polymorphic method calls,
say 𝑅𝐸𝐹.𝐹𝑂𝑂(), we have a reference, 𝑅𝐸𝐹 , of type 𝑃𝐴𝑅𝐸𝑁𝑇 , which points to
an object of type 𝐶𝐻𝐼𝐿𝐷, where 𝐶𝐻𝐼𝐿𝐷 is either 𝑃𝐴𝑅𝐸𝑁𝑇 itself or one of the
child classes of 𝑃𝐴𝑅𝐸𝑁𝑇 . Because of late binding, the call 𝑅𝐸𝐹.𝐹𝑂𝑂() calls the
method 𝐹𝑂𝑂() from 𝐶𝐻𝐼𝐿𝐷 not from 𝑃𝐴𝑅𝐸𝑁𝑇 . Let us suppose that we have
several child classes of 𝑃𝐴𝑅𝐸𝑁𝑇 . All of them implement the 𝐹𝑂𝑂() method.
These are the possible behaviors. When we give a value to 𝑅𝐸𝐹 then this is an
original decision, which is repeated when we do the polymorphic call 𝑅𝐸𝐹.𝐹𝑂𝑂().
But in this case, we do not need to repeat the predicate check which selects the
proper behavior, instead of that, the running framework performs a late binding.
So, there is no free lunch!

So, in case of polymorphic method calls we can distinguish between the original
decision and the repeated decisions. Can we do the same in case of IF and SWITCH
statements? Without loss of generality we study IF - ELSE IF structures. Note
that a SWITCH statement can be transformed into an IF - ELSE IF structure. The
IF statement has the syntax: IF (predicate) BLOCK1 [ELSE BLOCK2], where the
[ELSE BLOCK2] part is optional. Its semantics is the following: if the predicate
evaluates to true, then BLOCK1 is executed, otherwise, if there is an ELSE part,
BLOCK2 is executed. BLOCK2 can also be an IF statement. In this way we can
build an IF - ELSE IF structure.

Back to the previous question, what are the original decisions in case of an IF
statement? In case of an IF statement, the original decisions are those assignments
where we assign a value to those variables which are involved in its predicate.

For example, if we have the statement: IF (X == 1) BLOCK1, then the original
decision is the assignment, where X gets its value, like: X = 1. And the repeated
decisions are those IF statements which check the value of X in their predicate,
like: IF (X == 1) BLOCK1.

In this paper we give examples of how to refactor repeated predicate checks

2



ICAI 2023 Abstract

by using polymorphic method calls. If we do so, then we get a better CC value,
and also other code quality metrics become better, like REDC1, REDC2, MDA1,
MDA2 [4].

We select examples from the realm of design patterns. First, we present an ugly
code which is in "before applying the pattern" state. Then we present a nicer code,
an instance of a design pattern, so it is in "after applying the pattern" state.

Design patterns are well-designed, reusable solutions for common programming
tasks. One of the first design patterns was MVC (Model – View – Controller).
Design patterns can be seen as a lower level abstraction compared to Design Prin-
ciples [2].

There is a trend that forces programmers to give up their freedom. We cannot
modify the memory anymore as easily as in the C programming language; we have
no pointers; we cannot retrieve the memory address of a variable. We cannot do
that because those techniques are dangerous, it is easy to introduce an error using
them. We have this trend, because programming is not an art anymore, but a
normal job, where there are masters and a lot of youngsters. It is not a good idea
to give them dangerous tools.

The next logical step in this trend is to force programmers to use design pat-
terns. In a few years there will be tools which warn programmers that they could
introduce design patterns, and even do the refactoring. These tools need a lot of
examples for codes before introducing the design pattern and after that. With the
help of such examples research groups can test and teach their solutions. It seems
that there are very few works in this field, therefore, we have decided to share some
examples we have created.

Each example has a common structure: we have a Java code which contains
some redundancy. This is the code before introducing a design pattern. The
next version has the same behavior, i.e., the same functionality, but contains no
redundancy. This is the code after introducing a design pattern.

In this paper, we discuss the following design patterns: Adapter, Bridge, Builder,
and Decorator.

We believe that our before-after examples are valuable for those research groups
which work on automatic refactoring tools.

Finally, we use some code quality metrics to measure the examples. The selected
metrics are: REDC1, REDC2, MDA1, MDA2, and CC.

References
[1] M. Danisovszky, A. Adamkó, I. Baják, K. Kusper, S. Márien, G. Kusper: Cognitive

Code Quality Improvement with Pattern Recognition and Recommendation by Examples, in:
CogInfoCom, IEEE, 2020, doi: 10.1109/CogInfoCom50765.2020.9237896.

[2] M. Danisovszky, T. Nagy, K. Répás, G. Kusper: Western Canon of Software Engineering:
The Abstract Principles, in: CogInfoCom, IEEE, 2019, doi: 10.1109/CogInfoCom47531.2019
.9089999.

3

10.1109/CogInfoCom50765.2020.9237896
10.1109/CogInfoCom47531.2019.9089999
10.1109/CogInfoCom47531.2019.9089999


ICAI 2023 Abstract

[3] E. Gamma, R. Helm, R. E. Johnson: Design Patterns. Elements of Reusable Object-Oriented
Software. 1st ed., Reprint., Addison-Wesley Longman, Amsterdam, 1994, isbn: 0201633612,
url: http://www.amazon.de/Patterns-Elements-Reusable-Object-Oriented-Software/dp
/0201633612/ref=sr_1_1?ie=UTF8&qid=1302724786&sr=8-1.

[4] S. Márien: Decision structure based object-oriented design principles, Annales Mathematicae
et Informaticae 47 (2017), pp. 149–176.

[5] R. C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin
Series, Upper Saddle River, NJ: Prentice Hall, 2008, isbn: 978-0-13235-088-4, url: https://w
ww.safaribooksonline.com/library/view/clean-code/9780136083238/.

4

http://www.amazon.de/Patterns-Elements-Reusable-Object-Oriented-Software/dp/0201633612/ref=sr_1_1?ie=UTF8&qid=1302724786&sr=8-1
http://www.amazon.de/Patterns-Elements-Reusable-Object-Oriented-Software/dp/0201633612/ref=sr_1_1?ie=UTF8&qid=1302724786&sr=8-1
https://www.safaribooksonline.com/library/view/clean-code/9780136083238/
https://www.safaribooksonline.com/library/view/clean-code/9780136083238/

