
Divide a Divide-and-Conquer
into a Divide and a Conquer

Tamás Kozsik, Melinda Tóth, István Bozó

Dept. Programming Languages and Compilers, Eötvös Loránd University, Hungary
{tamas.kozsik,tothmelinda,bozoistvan}@elte.hu

Abstract

Divide-and-conquer algorithms appear in the solution of many computa-
tionally intensive problems, and are good candidates for parallelization. Their
identifying property is that such an algorithm divides its input into “smaller”
chunks, calls itself recursively on these smaller chunks, and combines the
outputs into one. We set up conditions which characterize a wide range
of divide-and-conquer function definitions. These conditions can be verified
by static source code analysis. This way divide-and-conquer functions can
be found automatically in existing program texts, and their parallelization
based on semi-automatic refactoring can be facilitated. We presents a set of
small, semantics-preserving code transformations and a methodology to refac-
tor divide-and-conquer functions in a functional programming language. By
applying a sequence of transformations using a refactoring tool, many divide-
and-conquer functions can be restructured into a canonical form – which then
can be refactored into an instance of a parallel divide-and-conquer pattern.
We work out the details in the context of the Erlang programming language.

Keywords: static source code analysis, refactoring, divide-and-conquer algo-
rithm, Erlang

MSC: 68-N15, 68-N19

References

[1] M. Cole, Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming, Parallel Comput. 30 (3) (2004) 389–406.

[2] D. Dig, A Refactoring Approach to Parallelism, IEEE Softw. 28 (2011) 17–22.

[3] T. Kozsik, M. Tóth, I. Bozó, Z. Horváth, Static Analysis for Divide-and-Conquer
Pattern Discovery, Computing and Informatics 35 (4) (2016) 764–791.

[4] Z. Mou, P. Hudak, An algebraic model for divide-and-conquer and its parallelism,
Journal of Supercomputing 2 (3) (1988) 257–278.

1


