Proceedings of the 10™ International Conference on Applied Informatics
Eger, Hungary, January 30-February 1, 2017. pp. 245-253
doi: 10.14794/ICAI.10.2017.245

Applying Heuristics to Improve our Java
Symbolic Execution Engine*

Edit Pengé

Department of Software Engineering, University of Szeged
pengoe@inf.u-szeged.hu

Abstract

Nowdays many static analyser tools are available to aid software develop-
ment and testing by detecting erroneous code segments and runtime issues.
Symbolic execution is a type of static analysis that can be used for exhaustive
runtime error search without the actual execution of the analysed program.

We developed a symbolic execution engine, called RTEHunter, for de-
tecting runtime failures in Java programs. As in the case of other symbolic
engines, overcoming the problems connected to path explosion and constraint
solving is an important challange for RTTEHunter as well. Our goal is to im-
prove the results of RTEHunter by finding a heuristical constraint solving
approach. We describe the solution and present the results produced on
more than 200 various sized Java systems.

Keywords: Source code analysis, Symbolic execution, Java

MSC: 68N01

1. Introduction

Testing is a critical part of software development for identifying bugs and runtime
issues. However when deadlines come closer or new requirments arise, testing is of-
ten neglected. It is because testing — especially sophisticated, high coverity manual
testing — requires a significant amount of resources which is not always available
during the pressure of production. A solution to this problem is to introduce more
automated methods that support bug detection.

Static analyser tools provide automated help in finding issues by analysing the
source code itself. Modern IDEs contain such tools to aid quality software devel-
opment and also many open source and commercial static analyser programs are
available. The time and computational effort required for the analysis depend on

*This research was supported by the EU-funded Hungarian national grant GINOP-2.3.2-15-
2016-00037 titled “Internet of Living Things”.

245

246 E. Pengé

the complexity of the aimed issues. IDE integtared and open-source tools usually
perform quick analysis and detect problems like dead code, whilst for serious prob-
lems a more time-consuming deep static analysis is needed. The classical symbolic
execution performs this kind of complex analysis by simulating the execution of the
program with the use of static analysis information only. This way it is possible to
find more severe runtime issues that might have remained undiscovered even after
manual testing.

In this work, we focus on the improvement of the symbolic execution engine
developed by our team. Our goal was to reduce its resource requirements without
notably altering its results. We examined that constraint solving is a considerable
challange, therefore we applied our heuristical approaches on this field. The solution
was tested on more than two hundred open source Java systems and it was proven
that in practice it worked well.

The rest of the paper is organized as follows. Related work is discussed in
Section 2. Section 3 introduces the technical background of classical symbolic
execution and our static analyzer. The improvement and the results are presented
in Section 4. Finally, we conclude the study in Section 5.

2. Related Work

The fundamentals of symbolic execution was introduced by King [9] in 1976. An-
other important early work is the survey of Coward [4]. He revealed the major
limitations and challanges of symbolic engines that still need to be addressed now-
days too. Due to the growth in computational power, symbolic execution engines
have become more and more popular since the 2000s as useful test generation and
correctness checker tools. The description of the recent trends and the solution for
the challanges can be found in the survey of Baldoni et al. [2] presented in 2016.

KLEE [3] is a novel symbolic engine based on the LLVM assembly language. It
behaves like a virtual machine and this way it can handle environmentally-intensive
programs, for example by setting up a symbolic filesystem or by simulating faulty
system calls. Symbolic PathFinder (SPF) [11] is developed at the NASA Ames
Research Center as part of the Java PathFinder (JPF) verification toolchain [6].
It performs the symbolic interpretation on the Java bytecode. JPF and SPF are
open-source projects; a symbolic executor created at our department, the so called
Jpf Checker [7] was written by using it. SPF is highly customizable, for example
it can be configured with several constraint solvers. One of them is the CORAL
solver [15], which handles complex mathematical functions making it effective in
scientific domains.

© 00U WN

= =
W= O

Applying Heuristics to Improve our Java Symbolic Execution Engine 247

3. Background

3.1. Symbolic execution

The basic idea of symbolic execution is that the program is executed on symbolic
input data instead of concrete values. During regular execution, the variables of
the program have concrete values, meaning that the program follows a specific
executional path determined by these values. A symbolic variable can hold any
concrete value that is allowed for its type, so for example a symbolic integer can be
an arbitrary whole number within the range of integer types. When the symbolic
executor can not determine the exact value of a variable (because, for example,
it is a user input or method parameter), a symbolic value is assigned to it. The
possible values of symbolic variables can be bounded with constraints, which makes
the symbolic execution more precise. These constraints are usually derived from
conditional statements or assignments. If a statement contains symbolic variables
the whole statement will be symbolic, and this applies for logical expressions too.
A symbolic boolean can either be true or false, therefore, the symbolic engine will
continue to execute both the true and false brances of a symbolic if statement.
Consequently, in theory a symolic engine will explore every possible executional
path and find hidden runtime exceptions. From the different executional paths, a
directed, acyclic graph can be composed, which is called the symbolic execution tree
(see Figure 1). Each node of the symbolic execution tree corresponds to distinct
program states. For each program state, we can apply a logical formula called
the path condition (PC). The PC is formed over the symbolic variables from the
constraints derived from conditional statements and assignments.

Listing 1: Sample code

class Test{
private CustomType data;
public String getDataStr () {
if (data = null)
return null;
return data.toString();

}

public int getHashCode () {
int code = 0;
if (data != null)

code = getDataStr().hashCode();
return code;

}
}

Listing 1 shows a simplified portion of a Java class. Let us consider that the
symbolic execution is started with the getHashCode () method starting in line 8.
This function calculates a hash code regarding the value of a custom typed class
member, data. The symbolic execution tree built up during the execution can be
found in Figure 1. Figure 1 does not show the details of the toString() method

248 E. Pengé

of the CustomType, and the execution of the hashCode () method is indicated with
only a curved line. The path condition of each path is presented in transparent,
black-bordered boxes next to the corresponding program states. For simplicity, it
contains constraints only for the symbolic member variable, data and is presented
only when there is a change, namely after conditional statements involving variable
data. It can be seen that on the false branch of a symbolic if statement the
negation of the logical expression is added to the PC. When investigating the
source code and the execution tree it is obvious that if the getDataStr() is called
from the getHashCode() function, the conditional statement in line 4 can never
be true. Consequently, the program states colored with yellow are unreachable.
This unreachability is expressed in the PC too: it is infeasible. A symbolic engine
can detect unreachable states with constraint solvers. Constraint solvers are used
to solve the PC, they can assign values to the symbolic variables that satisfy the
logical formula. If an infeasible PC is found the execution will be stopped on that
path, so the engine can avoid not only unnecessary execution but possible false
positive warnings. As figure 1 indicates, if the execution was continued along the
unreachable program state an incorrect NullPointerFException would be reported.

3.2. RTEHunter

Our department! is developing SourceMeter [14], a static source code analyzer tool.
It analyses C/C++, Java, C#, Python and RPG projects and calculates source
code metrics, detects code clones and finds coding rule violations in the source
code. RTEHunter (abbreviation of RunTimeException Hunter) is one of the static
analyzers of the SourceMeter Java toolchain. It is designed to detect runtime ex-
ceptions in Java source code without actually executing the application in real-life
environment. Currently it can detect four kinds of common failure: NullPoint-
erException, ArraylndexOutOfBoundsEzception, NegativeArraySizeException, and
DivideByZeroEzception.

RTEHunter is a classical type symbolic executor engine written in C++. It
performs seperate symbolic executions on each method found in the analysed Java
source. The input for RTEHunter is the Abstract Semantic Graph (ASG) [5] of
the analysed program, which is constructed by the SourceMeter. The ASG is
a language-dependent representation of the source code that contains detailed se-
mantic information in an internal graph representation. Using the ASG RTEHunter
creates a language-independent Control Flow Graph (CFG) [1] for each method.
Figure 2 shows the two CFGs composed for the methods of the sample code in
Listing 1. Each method has its own CFG but they are interconnected with a call
edge because the getHashCode () method uses the getDataStr() method.

The symbolic execution is performed by traversing through the CFGs. In a
CFG each node represents a basic block. A basic block is a straight-line sequence of
code with exactly one entry point and exaclty one exit point. It is guaranteed that
no branching will happen during the execution of the program code represented by

ISourceMeter is developed at Department of Software Engineering, University of Szeged.

Applying Heuristics to Improve our Java Symbolic Execution Engine 249

invoke getHashCode()

int code = 0

if(data != null) getHashCode()

true

PC: datal=null invoke getDataStr()

—

PC: data!=null && data=null] [return null } [return data.toString() } PC: datal=null
| NPE |<—[invoke hashCode() } { invoke hashCode() }
PSS > hashCode()
A s
[return value } { return value }

T T

| |

Y Y
code = value code = value
return code return code

Figure 1: A simplified symbolic execution tree

J getHashCode()|

a basic block, e.g. it does not include any jumps or jump targets. As it can be seen
in Figure 2, every function call and conditional statement (amongst other language
constructions) will start a new basic block. The entry point and the exit point of
a CFG is represented by an EntryBlock (green box) and an ExitBlock (red block),
respectively. The control can enter and leave the CFG of a method only through
these nodes.

4. Contribution

The discussed example gives a quick insight on how the symbolic execution is pre-
formed in the classical way. Both the presented source code and its conditional
statements are simple, therefore, maintaning the path condition is easy. However,
for more complex programs, the symbolic execution tree will be much larger. The
number of branches grows almost exponentially with the number of symbolic con-
ditional statements. This is what we call the path explosion problem. Due to the

250 E. Pengé

[String getDataStr()] [int hashCode()]

EntryBlock EntryBlock

BasicBlock: 3

[ndKintegerLiteral][0] : 137
[ndkVariable][code] : 136
[ndkidentifier][data] : 142
[ndkNullLiteral][] : 143
[ndKinfixExpression][] : 141
[ndkParenthesizedExpression][: 140

BasicBlock: 3

[ndkidentifier][datal : 123
[ndkNullLiteral][] : 124 call

1122
[ndkParenthesizedExpression][] : 121

control - false control - true

BasicBlock: 6 [BasicBlock: 4 BasicBlock: 4

control - true

[ndkidentifier][data] : 131 [ndkNullLiteral][] : 127 | ___|___|indkidentifier]icode] : 147
[ndKFieldAccess][] : 130
[ndkldentifier][toString] : 132

[ndkidentifier][getDataStr] : 151

control

BasicBlock: 6
ion][] : 150 control - false

[ndkFieldAccess][: 149
[ndkidentifier][hashCode] : 152

control

BasicBlock: 5

[ndkMethodinvocation][] : 148
[ndkAssignment][] : 146

control
BasicBlock: 7

[ndkidentifie][code] : 154

Figure 2: Control flow graph of the sample code shown in Listing 1

path explosion it is unlikely that symbolic engines can explore the whole symbolic
execution tree exhaustively within a reasonable amount of time. Path explosion
is in connection with the difficulty that we are addressing in this paper, namely
the constraint solving problem. As previously mentioned, forming a path condition
from the symbolic variables and checking its satisfiability at branching points are
useful for pruning the symbolic execeution tree, filtering out unreachable program
states and hereby false positive warnings. In practice, constraint solvers suffer from
many limitations that affect computational time significantly. They consume a big
portion of the overall runtime causing symbolic engines to scale poorly on bigger
systems. Constraint solving optimizations have to be made to maintain a trade-off
between accuracy and scalability.

4.1. Null constraint solver

Themany optimization attempts are available in the current symbolic engines. One
idea is to mix concrete and symbolic execution into the so called concolic execution.
For example, if the constraint solver of the CUTE and jCUTE systems [13], [10] fails
to satisfy a complex expression, the constraints are simplified by replacing some
symbolic variables with concrete values. Another option is using incrementally

Applying Heuristics to Improve our Java Symbolic Execution Engine 251

the results of similar constraint expressions. Ramos and Engler [12] introduced
the under-constrainted symbolic execution whose basic idea — executing functions
directly — is similar to the method by method approach implemented in RTEHunter.

Our team had gained experience in the use of constraint solvers with the pre-
decessor of RTEHunter, as it was described in 2015 by Kéadar et al. [8]. However,
in RTEHunter we dismissed the introduced constraint solving mechanism. We de-
cided to try out a more lightweight, heuristical approach instead of a conventional
constraint solver and the result of this idea was the null constraint solver.

The basic idea of this simplified solver is that we store constraints refeering
only to the null value of a symbolic variable. Constraints express only whether
a symbolic object is null or not, therefore only null assignments and null value
checks are considered during the build-up of the path condition. It is clear that
the expressions will remain quite simple and checking the feasibility is also very
easy. In Listing 1 on the true branch of the if statement in line 11 it will be
noted that the member variable data is anything but null, so when the second
conditional statement is reached in line 4 the infeasibility can be detected with
almost zero effort. This approach did not alter notably the computational time
requirements of RTEHunter whose previous version entirely lacked a constraint
solving mechanism. We lost the arithmetic constraints, however this seemed to be
a viable trade-off.

4.2. Results

We collected 209 open source Java systems to test the null constraint solver. These
Java systems are from various industrial domains and their size ranges from a
thousand to 2.5 million lines of code with the average of 140 000. To see the im-
provement, we executed both the original, constraint solverless and the improved
versions of RTEHunter on the selected Java systems The results are presented in
Table 1. As it can be seen there is a decrease in the number of NullPointerEx-
ceptions (NPE), NegativeArraySizeEzceptions and ArrayIndexOutOfBoundsExcep-
tions. The numbers hide that in fact 16 NPE were eliminitaed and 7 new were
introduced. RTEHunter stops the execution along a path when a runtime failure
is detected therefore it is obvious that the new warnings showed up because by
eliminating unreachable paths the symbolic engine could explore other paths in
the symolic executional tree before reaching the executional limits. The conclusion
of the verification was that not only did we eliminate some serious false positive
warnings, but also discovered 7 true positive runtime issues, though our heuristical
approach needs future improvement.

RTEHunter NullPointer- | NegativeArray- DivideBy- ArrayIndexOut-
Exception SizeException ZeroException | OfBoundsException
Original 3,102 24 167 681
Improved 3,093 23 167 675

Table 1: The results of the original and improved RTEHunter

252 E. Pengé

5. Conclusions

Symbolic execution is a static analyser method that simulates the execution of
a program by assuming symbolic values for inputs and environment dependent
variables. Despite the fact that symbolic execution is a powerful tool for bug
detection, there are many challenges and practical limitations. An important field
of these difficulties is constraint solving which is useful for making symbolic engines
more precise. Regardless of their positive effects, contraint solvers demand many
resources, therefore finding more lightweight but still satisfactory solutions is an
important challenge. We tried out a heuristical approach and tested it on more than
200 open source Java systems. The results showed that not only did it increase the
accuracy of the symbolic engine by filtering out false positive warnings but more
true positive runtime errors could be discovered within the same executional limits.

In the future, we plan to improve our heuristical constraint solving and find
more solutions that would not increase the resource requirements significantly, but
improve the efficiency of the algorithm.

References

[1] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1-19, July 1970.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. arXiv preprint
arXiv:1610.00502, 2016.

[3] Cristian Cadar, Daniel Dunbar, Dawson R. Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In OSDI,
volume 8, pages 209-224, 2008.

[4] P. David Coward. Symbolic Execution Systems — a Review. Software Engineering
Journal, 3(6):229-239, November 1988.

[5] Rudolf Ferenc, Arpad Beszédes, Mikko Tarkiainen, and Tibor Gyiméthy. Columbus
— Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th In-
ternational Conference on Software Maintenance (ICSM’02), pages 172-181. IEEE
Computer Society, IEEE Computer Society, oct 2002.

[6

[7] Istvan Kadar, Péter Hegedis, and Rudolf Ferenc. Runtime exception detection in
java programs using symbolic execution. Acta Cybernetica, 21(3):331-352, 2014.

Java PathFinder Tool-set. http://babelfish.arc.nasa.gov/trac/jpf.

[8] Istvan Kadar, Péter Hegedis, and Rudolf Ferenc. Adding constraint building mech-
anisms to a symbolic execution engine developed for detecting runtime errors. In In
Proceedings of the 15th International Conference on Computational Science and Its
Applications, pages 20-35, 2015.

[9

James C. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385-394, July 1976.

[10] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In Proceedings - Inter-
national Conference on Software Engineering, pages 416-425, 2007.

Applying Heuristics to Improve our Java Symbolic Execution Engine 253

[11]

[12]

[13]

[14]
[15]

Corina S. Pasdreanu and Neha Rungta. Symbolic PathFinder: Symbolic Execution
of Java Bytecode. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE 10, pages 179-180, New York, NY, USA,
2010. ACM.

David A. Ramos and Dawson Engler. Under-constrained symbolic execution: Cor-
rectness checking for real code. In 24th USENIX Security Symposium (USENIX
Security 15), pages 49-64, Washington, D.C., 2015. USENIX Association.

Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit
Path Model-checking Tools. In Proceedings of the 18th International Conference on
Computer Aided Verification, CAV’06, pages 419-423, Berlin, 2006. Springer-Verlag.

The SourceMeter Homepage. https://www.sourcemeter. com.

Matheus Souza, Mateus Borges, Marcelo D’Amorim, and Corina S. Pasareanu.
CORAL: Solving complex constraints for symbolic pathfinder. In Lecture Notes in
Computer Science, volume 6617 LNCS, pages 359-374. Springer, Berlin, Heidelberg,
2011.

