
Detecting Misusages of the C++ Standard
Template Library

Gábor Horváth, Attila Páter-Részeg, Norbert Pataki

Dept. of Programming Languages and Compilers
Fac. of Informatics, Eötvös Loránd University, Budapest

xazax.hun@gmail.com, athilarex730@gmail.com, patakino@elte.hu

Abstract

The C++ Standard Template Library (STL) is the most well-known and
widely used library that is based on the generic programming paradigm. The
STL takes advantage of C++ templates, so it is an extensible, effective but
flexible system. Professional C++ programs cannot miss the usage of the STL
because it increases quality, maintainability, understandability and efficacy
of the code.

However, the usage of C++ STL does not guarantee bugfree or error-
free code. Contrarily, incorrect application of the library may introduce new
types of problems. Unfortunately, there is still a large number of properties
are tested neither at compilation-time nor at run-time. It is not surprising
that in implementation of C++ programs so many STL-related bugs may
occur.

It is clearly seen that the compilation validation is not enough to exclude
the misuage of STL. Our paper introduces different approaches for the val-
idation of the C++ STL’s usage. We take advantage of metaprogramming
techniques, static analysis based on the Clang compiler infrastructure and
gdb debugging tool as well.

Keywords: C++, STL, validation

MSC: 68N15 Programming languages

1. Introduction

The C++ Standard Template Library (STL) was developed by generic program-
ming approach [1]. In this way containers are defined as class templates and many
algorithms can be implemented as function templates [15]. Furthermore, algo-
rithms are implemented in a container-independent way, so one can use them with

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 129–136

doi: 10.14794/ICAI.10.2017.129

129

different containers [8]. C++ STL is widely-used because it is a very handy, stan-
dard library that contains beneficial containers (like list, vector, map, etc.), a lot
of algorithms (like sort, find, count, etc.) among other utilities.

The STL was designed to be extensible [2]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can extend
the set of algorithms with a new one that can work together with the existing
containers. Iterators bridge the gap between containers and algorithms. The ex-
pression problem is solved with this approach [16]. STL also includes adaptor types
which transform standard elements of the library for a different functionality [11].
By design, STL is implemented with application of C++ templates to ensure the
efficiency and cannot be compiled in advance. However, we can take advantage of
this fact in our methods.

The usage of STL increases the code quality and helps to avoid the classical
C/C++ problems (e.g. memory leak). On the other hand, the STL introduces
new kinds of problems that come from the generic approach. We have figured out
different methods to detect the misusage of STL. We present a metaprogramming-
based solution, a static analysis tool and debugger-oriented framework.

This paper is organized as follows. In section 2 we present many STL-related
difficulties that may result in runtime errors. Compilers typically do not detect
these problem. We present our different approaches to realize the STL-related
problems: the first one deals with template metaprogramming, the second one is
Clang-based static analysis tool and the third one is a debugger-driven framework.
Finally, this paper concludes in section 4.

2. Motivation

C++ STL is handy template library that helps to overcome the classical C/C++
bugs but it introduces new kinds of issues. One of the problems is that the error
diagnostics are usually complex, and very hard to figure out the root cause of a
program error [17]. Violating requirement of special preconditions (e.g. sorted
ranges) is not checked, but results in runtime bugs [13]. A different kind of stickler
is that if we have an iterator object that pointed to an element in a container, but
the element is erased or the container’s memory allocation has been changed, then
the iterator becomes invalid. Further reference of invalid iterators causes undefined
behaviour [13].

Another common mistake is related to algorithms which are deleting elements.
The algorithms are container-independent, hence they do not know how to erase
elements from a container, just relocate them to a specific part of the container, and
we need to invoke a specific erase member function to remove the elements phisi-
cally. Therefore, for example the remove and unique algorithms do not actually
remove any element from a container [6].

The previously mentioned unique algorithm has uncommon precondition. Ele-
ments with the same value should be in consecutive groups. In general case, using
sort algorithm is advised to be called before the invocation of unique. However,

130 G. Horváth, A. Páter-Részeg, N. Pataki

unique cannot result in an undefined behaviour, but its result may be counter-
intuitive at first time.

Some of the properties are checked at compilation time. For example, the code
does not compile if one uses sort algorithm with the standard list container because
the list’s iterators do not offer random accessibility. Other properties are checked
at runtime. For example, the standard vector container offers an at method which
tests if the index is valid and it raises an exception otherwise [3].

Unfortunately, there is still a large number of properties are tested neither at
compilation-time nor at run-time. Observance of these properties is in the charge
of the programmers. On the other hand, type systems can provide a high degree
of safety at low operational costs. As part of the compiler, they discover many
semantic errors very efficiently.

Associative containers (e.g. multiset) use functors exclusively to keep their el-
ements sorted. Algorithms for sorting (e.g. stable_sort) and searching in ordered
ranges (e.g. lower_bound) are typically used with functors because of efficiency.
These containers and algorithms need strict weak ordering. Containers become in-
consistent, if the used functors do not meet the requirement of strict weak ordering
[9].

Certain containers have member functions with the same names as STL al-
gorithms. This phenomenon has many different reasons, for instance, efficiency,
safety, or avoidance of compilation errors. For example, as mentioned, list’s it-
erators cannot be passed to sort algorithm, hence code cannot be compiled. To
overcome this problem list has a member function called sort. List also provides
unique method. In these cases, although the code compiles, the calls of member
functions are preferred to the usage of generic algorithms.

3. Approaches

3.1. Metaprogramming
This approach is based on the template construct which is able to evaluate Turing-
complete checks at compilation time [14]. However, this approach cannot deal
with abstract syntax trees, only template instantiations can be considered. This
approach is typically, non-intrusive, so we have to modify the STL implementation
itself. On the other hand, these evaluations is part of the usual compilation process
and cannot be avoided.

The first goal is to emit custom warning messages from the compilers even if the
compiler is not open source. We use the following template function for generating
warning:

template <class T>
inline void warning(T t) { }

This template generates warning when it is instantiated and in the warning
message the template argument is highlighted, so new kind of warning requires a

Detecting Misusages of the C++ Standard Template Library 131

dummy type:

struct DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER
{
};

One can instantiate the template with this dummy type easily:

warning(DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER());

Different compilers emit the warning in different ways. Microsoft Visual Studio
presents the following warning:

warning C4100: ’t’ : unreferenced formal parameter
...
see reference to function template instantiation ’void
warning<DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER>(T)’
being compiled

with
[

T=DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER
]

The g++ compiler emits the warning:

In instantiation of ’void warning(T)
[with T = DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER]’:

... instantiated from here

... warning: unused parameter ’t’

With this approach we can modify our STL implementation to evaluate specific
instantiations: we have to add the warning method to vector<bool> specializa-
tion’s constructor or to the auto_ptr partial specializations. The conversion of
reverse iterators also can be detected with this technique. There are some cases
when more sophisticated approaches are required. The iterator_traits type also
can be extended with extraordinary members to pass metainformation from the
containers to the algorithms (e.g. sortedness of container). The metaprogramming
facilities also can be used these metadata and emit compilation warnings in specific
cases, e.g. count algorithm on a sorted container [12]. Typically programmers may
use believe-me marks to disable specific warnings.

3.2. Static analysis

This approach is based on pattern matching on the syntax tree of the analysed
program source code. We use the syntax tree that is generated by the Clang [5]

132 G. Horváth, A. Páter-Részeg, N. Pataki

compiler. The syntax tree of a compiler contains sufficient amount of information
to answer several questions regarding the source code.

However, in order to parse the source of the program we need to know the exact
compiler arguments that were used to compile that application. This is necessary
because the compiler arguments can modify the semantics of the source code for
example macros can be defined using compiler arguments.

To collect the compilation arguments the most efficient and portable way is to
use fake compilers that are logging their parameters and forwards them to a real
compiler afterwards. This way the logging itself is independent of the make system
that is used. The source code is parsed with the same compilation parameters that
was logged.

After we retrieved the syntax tree of the analysed program from the compiler
the pattern matching process begins. Multiple patterns are matched lazily on the
syntax tree with only one traversal. The source positions for the matched nodes in
the syntax trees are collected.

The source positions in the collected results are filtered based on exclude lists
that contains of the false positive matches. These exclude lists have to be main-
tained by the user of the tool. Afterwards the positions are translated into user-
friendly warning messages.

One of the downsides is that, the compiler can only parse one translation unit at
a time. Some useful information might reside in a separate translation unit making
it impossible to detect some class of issues. Fortunately due to the structure of
STL most of the library code is available in system header files. For this reason
if a translation unit is utilizing some STL features, the corresponding headers are
likely to be the part of that unit. This structure mitigates the limitations of the
compiler, translation unit boundaries are not likely to be a problem when analysing
STL misuse patterns.

Each of the checkers that are able to detect certain class of bad smells are im-
plemented as a predicate on the syntax tree. These predicates are loosely coupled.
We have focused on the extendibility, thus it is very easy to add further checkers
to our tool.

This approach is more subtle than metaprogramming and it is able to detect
bugs and smells that cannot be discovered by metaprograms: using the “swap-trick”
to decrease a vector’s unnecessary allocated capacity, one can use shrink_to_fit
method since C++11 [4]. It is also can be detected if someone calls an algorithm
that removes element(s) from a container but does not call the container’s erase
method to remove the element(s) actually. This tool also can detect instantiation
of a vector<bool> or a container of auto_ptr (COAP). Using COAP objects is
forbidden.

3.3. Automatic runtime validation

This approach is non-intrusive, runtime approach for validating the usage of STL.
This approach is based on the gdb debugger tool. We set breakpoints to specific

Detecting Misusages of the C++ Standard Template Library 133

locations in the library and when the execution is stopped we can evaluate the in-
tervals, iterators, the state of the containers, etc. After evaluation, we can continue
the execution or indicate an error.

We have developed gdb script for validating the usage of STL. For instance,
the hereinafter checkinterval script validates if an interval is sorted based on
operator<.

define checkinterval
if $argc == 2

set $first = $arg0
set $last = $arg1
set $l = 1
while $first._M_current < ($last._M_current - 1) && $l == 1

set $act = $first
set ++$first._M_current
if *($first._M_current) < *($act._M_current)

set $l = 0
end

end
if $l == 1

printf "PASSED\n"
else

printf "ERROR, interval not sorted\n"
end

end
end

We can set breakpoints to our specific library implementation, for instance
in gdb we can define two breakpoints that stop the execution when one of the
overloaded std::unique algorithm is invoked:

break /usr/include/c++/5.3.1/bits/stl_algo.h:992
break /usr/include/c++/5.3.1/bits/stl_algo.h:1022

After evaluation at specific points of the STL implementation one can continue
the execution. However, the gdb scripts are not sophisticated properly, so we have
developed an automation tool. This tool has many goals:

• Preparation: launches the debugger with logging and added breakpoints

• Data processing: logging the debugger’s output and process it. The impor-
tant data must be filtered and forward it to the analysing component.

• Administration: this component maintains the state of objects because the
STL object’s may change between two breakpoints. For instance:

– Iterator administration: keep iterators’ data update: name, validity,
referred memory address.

134 G. Horváth, A. Páter-Részeg, N. Pataki

– Container administration: keep containers’ state update: type, capacity,
size, iterators etc.

• Analysis: this component evaluates the maintained objects in an iterative
way. It drives the the debugger, the data processing component and passes
input for the logging component and finally makes the gdb to continue the
execution.

• Logging: the framework returns a comprehensive list of every critical STL-
related code snippet. Every item of this list appears in a logfile and describes
if the test is fails, passes or warns a potential misuages.

The tool detects problems related to algorithms: using find and count al-
gorithms on sorted containers, using algorithms with special precondition (e.g.
lower_bound and misusages of copying and removing algorithms. This tool is able
to detect iterator invalidation, as well. Problems with iterator conversion also can
be realized. Special instantiation of containers (e.g. COAP and vector<bool>) is
discovered, as well.

4. Conclusion

C++ STL is the most important library based on the generic programming. It is
a handy, useful standard library that contains many indispensable containers and
primary algorithms, etc.

However, the incorrect usage of the library may result in an undefined behaviour
that should be avioded. Some reasonable scenarios have weird effects or affect the
performance. In this paper we argue for approaches to make the STL’s usage safer.
With our different techniques one can checks if the library’s usage is incorrect. We
present three alternative implementations: metaprograms that evaluated by the
C++ compiler, a Clang-based static analysis tool, and a gdb-driven framework
that searches for misusages at runtime without any modification in the library
implementation.

References

[1] Austern, M. H.: “Generic Programming and the STL: Using and Extending the C++
Standard Template Library”, Addison-Wesley (1998).

[2] Czarnecki, K., Eisenecker, U. W.: “Generative Programming: Methods, Tools and
Applications”, Addison-Wesley (2000).

[3] Dévai, G., Pataki, N.: A Tool for Formally Specifying the C++ Standard Template
Library, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nom-
inatae, Sectio Computatorica, 31 (2009), pp. 147–166.

[4] Horváth, G., Pataki, N.: Clang matchers for verified usage of the C++ Standard
Template Library, Annales Mathematicae et Informaticae 44 (2015), pp. 99–109.

Detecting Misusages of the C++ Standard Template Library 135

[5] Lopes, B. C., Auler, R.: “Getting Started with LLVM Core Libraries”, Packt Pub-
lishing (2014).

[6] Meyers, S.: “Effective STL - 50 Specific Ways to Improve Your Use of the Standard
Template Library”, Addison-Wesley (2001).

[7] Pandey, M., Sarda S.: “LLVM Cookbook”, Packt Publishing (2015).

[8] Pataki, N.: C++ Standard Template Library by Ranges, in Proc. of the 8th Interna-
tional Conference on Applied Informatics (ICAI 2010) Vol. 2., pp. 367–374.

[9] Pataki, N.: Advanced Functor Framework for C++ Standard Template Library, Stu-
dia Universitatis Babeş-Bolyai, Informatica, LVI(1) (2011), pp. 99–113.

[10] Pataki, N.: Compile-time advances of the C++ Standard Template Library, An-
nales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sec-
tio Computatorica 36 (2012), pp. 341–353.

[11] Pataki, N.: Safe Iterator Framework for the C++ Standard Template Library, Acta
Electrotechnica et Informatica 12(1) (2012), pp. 17–24.

[12] Pataki, N., Porkoláb, Z.: Extension of Iterator Traits in the C++ Standard Template
Library, in Proc. of the Federated Conference on Computer Science and Information
Systems (2011), pp. 919–922.

[13] Pataki, N., Szűgyi, Z., Dévai, G.: Measuring the Overhead of C++ Standard Tem-
plate Library Safe Variants, Electronic Notes in Theoret. Comput. Sci., 264(5)
(2011), pp. 71–83.

[14] Porkoláb, Z.: Functional Programming with C++ Template Metaprograms, in Proc.
of Central European Functional Programming School, Revised Selected Lectures,
Lecture Notes in Computer Science, 6299 (2009), pp. 306–353.

[15] Stroustrup, B.: “The C++ Programming Language”, Addison-Wesley (1999).

[16] Torgersen, M.: The expression problem revisited – Four new solutions using generics,
Lecture Notes in Comput. Sci. 3086 (2004), pp. 123–143.

[17] Zolman, L.: An STL message decryptor for visual C++, C/C++ Users Journal,
19(7) (2001), pp. 24–30.

136 G. Horváth, A. Páter-Részeg, N. Pataki

