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Abstract
Source dependencies are mostly stored in executable format, and as they

can seldom be statically analysed, industrial developers often have to treat
these as black boxes. While it would be cost-effective to statically analyse
these executables, such endeavours are impeded by the considerable structural
and semantical differences between low-level and high-level code. In this
paper, we present an algorithm that recovers syntactically valid Erlang syntax
trees from low-level BEAM bytecode. This syntax tree then can be used
in static analysis, to effectively communicate the semantical content of the
dependencies.
Keywords: static analysis, decompilation, BEAM
MSC: 68N15

1. Introduction
Developers of industrial-scale software, with several hundred thousand LOC, often
need to rely on external tools such as debuggers and static analysis support, to
understand the internal workings of their developed software. Source dependencies
are mostly stored in executable representation, which is different from the source
language. With time, the original sources of these dependencies can become
unavailable in various ways. In these cases, static analysis frameworks not prepared
to handle low-level library representations has to stop their analysis at these
dependencies, and developers have to fall back to considering these as black boxes.
Our goal in this paper is to enable the static analysis of Erlang library dependencies
in BEAM bytecode format.
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The following list summarizes our contributions in this paper.

• We introduce an algorithm that enables the static analysis of Erlang library
dependencies in BEAM bytecode format.

• The introduced algorithm represents the collected semantical informations
in syntactically valid Erlang syntax tree, that is semantically equivalent, and
syntactally similar to the original Erlang sources.

• The generated Erlang code, representing the semantics of the original code,
then is readily analysable by RefactorErl.

• We intended to design the framework to general and adaptable enough, so
that in the future it can be extended for other emerging languages targeting
the BEAM platform, such as Elixir [11].

2. Problem statement

The Erlang programming language [3] is a popular, functional programming lan-
guage, commonly used to develop multithreaded, distributed, fault-tolerant applica-
tions, including telecommunication systems, web servers, and distributes databases.
The library dependencies of Erlang programs are usually stored in low-level BEAM
bytecode format, which is interpreted by the BEAM virtual machine [18]. BEAM,
the VM supports efficient and automatic memory allocation via garbage collection
and intensely scalable multi-threading via lightweight-threads. BEAM, the language
is an imperative, register-based language. Figure 1 depicts a small Erlang function
and Figure 2 depicts the low-level bytecode representation of the aforementioned
Erlang function. It strongly resembles low-level assembly code, implementing control
flow using jump, and conditional jump instructions. Unlike conventional machine
instruction sets, BEAM also contains fairly high-level instructions to simplify the
expression and execution of the semantics assigned to certain Erlang structures,
but also to command the VM to perform tasks related to memory management and
thread scheduling.

The RefactorErl [17, 4] framework is an open-source tool for performing static
analysis on Erlang software. At its current state, RefactorErl is only capable to
completely analyse source code in Erlang. Our goal in this paper is to prepare the
RefactorErl framework to provide comprehension facilites for BEAM bytecode, thus
allowing it, to analyse all source dependencies, even if they are stored as bytecode.

To achieve this, we first have analyse these bytecode modules, represent the
collected semantical informations as syntactically valid Erlang syntax tree, that is
semantically equivalent, and syntactally similar to the original Erlang sources, so it
can be readily added to the RefactorErl framework, so its already defined static
analysis facilities can reused for this purpose, without restrictions.
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-module(event_handler).
-export([handle_event/1]).

handle_event(Event) ->
case Event of

ok -> done;
{message, _} -> done;
_ -> unknown_event

end.

Figure 1: Simple Erlang module
with a function definition

{function, handle_event, 1, 2}.
{label,1}.
{line,[{location,"event_handler.erl",4}]}.
{func_info,{atom,event_handler},

{atom,handle_event},1}.
{label,2}.
{test,is_tuple,{f,3},[{x,0}]}.
{test,test_arity,{f,5},[{x,0},2]}.
{get_tuple_element,{x,0},0,{x,1}}.
{test,is_eq_exact,{f,5},[{x,1},

{atom,message}]}.
{jump,{f,4}}.
{label,3}.
{test,is_eq_exact,{f,5},[{x,0},{atom,ok}]}.
{label,4}.
{move,{atom,done},{x,0}}.
return.
{label,5}.
{move,{atom,unknown_event},{x,0}}.
return.

Figure 2: Bytecode representation of
the handle_event/1 function

3. Methodology
Compilation, in general, is not a deterministically invertible operation.Therefore,
there is no algorithm, that can completely reconstruct (decompile) the original source
code from the target code, without having some kind of additional information
about the original source code. Such lost information are variable names, syntactical
sugar, macros and dead code. In addition the compiler may generate new function
definitions to compile anonymous functions, that are indiscernible from the original
top-level user-defined functions.

In this section, we present a framework for generating high-level, human-readable
Erlang code from low-level BEAM bytecode, which is structurally similar to the
original source. While the individual steps of the decompiler pipeline are more-
or-less well-known techniques in compiler design and analysis, our unique goal of
reverse engineering a functional programming language called for a unique blend of
the application of the techniques.

3.1. The beginnings: BEAM bytecode
This information loss is almost entirely limited to the syntax of the source code:
we almost always expect the source and the target to be completely semantically
equivalent, with the only exception being the differences introduced by compiler
optimizations.

Still, we do not expect bytecode compilers to produce heavily optimized target
bytecode, since the primary purpose of these compilers is to relieve the interpreter
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(i.e. the virtual machine) from the complex task of the lexical/syntactical/semantical
analysis of a high-level programming language. In our observation, the official erlc
Erlang compiler also avoids heavy optimizations. It only eliminates dead code
detectable in compile-time, and it introduces jumps to avoid redundant generation
of certain instructions. Still, even the reversing of these simpler optimizations can
be a complex task for structuring.

3.2. Explicitly expressing semantics by using intermediate
representation (IR)

As there is no official specification published for the BEAM, there is no guarantee
that the instruction syntax and semantics will be kept unchanged between different
versions, and different implementations of the Erlang VM. The introduction of IRs
reduces our efforts from designing m × n compilers, to designing just 1 compiler
and specifying n+m translations [1].

Another motivating factor to use an IR, is that most of the BEAM instructions
have implicit semantics: the syntax of such instructions does not explicitly refer to all
the parameters affected by the instruction. The translation rule in Figure 3 illustrates
how the IR makes explicit the meaning of the BEAM instruction {call_ext_last,
ARITY, {MODULE,FUNCTION,ARITY}, SIZE}.

{call_ext_last, N, MFA, D}
{x, 0} := {call, MFA, [{x, 0}, ..., {x, N− 1}]};

vm {deallocate, D};
return {x, 0};

Figure 3: A translation rule for transforming BEAM to IR

It can be seen, that – without an IR – to handle m instructions that perform
n tasks, we need to prepare the decompiler to analyze m× n different cases. (In
this example m = 1 and n = 4.) If we introduce an IR, by first translating the
m BEAM instructions each to n IR instructions performing exactly one task, the
decompiler only needs to iterate over m× n simple, well-understood and explicit
IR instructions, instead of doing the same amount of complex case-by-case analysis.
This considerably reduces the required developer effort.

3.3. Efficient handling of jump instructions by using control
flow graphs (CFGs)

Low-level languages often implement control flow by using jump instructions (also
called goto instructions). By treating these jumps as references to specific program
points, the idea may naturally emerge to represent the control flow of low-level
programs as a graph, and as such, we may consider CFGs as the foundation of most
decompiling techniques. In our case, the SSA-form (Single Static Assignment) and
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procedure handle_event [{x,0}] at 2:
1:
throw {function_clause,{atom,event_handler},

{atom,handle_event},1};
2:
if not is_tuple [{x,0}] then goto 3;
if not test_arity [{x,0},2] then goto 5;
{x,1} := {x,0}[0];
if not is_eq_exact [{x,1},{atom,message}]

then goto 5;
goto 4;
3:
if not is_eq_exact [{x,0},{atom,ok}]

then goto 5;
4:
{x,0} := {atom,done};
return {x,0};
5:
{x,0} := {atom,unknown_event};
return {x,0};

Figure 4: Intermediate representation of the bytecode of the
handle_call/1 function

the structuring algorithm will both be based on the CFG. In the following sections
we assume the reader is familiar to the fundamental concepts of CFGs, such as basic
blocks, flows, entry and exit nodes, choice and join nodes [1]. We will also lean on
the concepts of dominance, postdominance and dominator frontier, defined in [7].

3.4. Restoring the single assignment property
During code generation we will have to map BEAM registers to Erlang variables.
In general, mapping registers to variables is the inverse problem of the register
allocation problem in compiler design, and – unlike the original problem – it can be
easily solved.

Unlike Erlang variables, the number of registers in the BEAM is bounded,
therefore BEAM bytecode programs will necessarily overwrite the content of some
registers. As a consequence, we can not satisfy the single assignment property with
a simple one-to-one mapping from registers to variables.

Our goal then, is to map BEAM registers to Erlang variables, in a way so
that each variable is only assigned once. To do so, we will employ Static Single
Assignment (SSA), a special control flow representation introduced by [7]. The
SSA graph is topologically and semantically equivalent to the original CFG, but
additionally it satisfies the constraint that each variable is only assigned once during
its lifetime. Every CFG can be lifted to SSA form.

With this, we may see the SSA as a mere fix to achieve the single assignment
property. Later in this section we shall see that the connection between SSA and
Erlang (actually between SSA and functional programming languages in general)
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{entry,{event_handler,handle_event,1}}

1    procedure handle_event [{x,0}] at 2: 

4    2: 
5    if not is_tuple [{x,0}] then goto 3;

10    3: 
11    if not is_eq_exact [{x,0},{atom,ok}] then goto 5;

16    if not test_arity [{x,0},2] then goto 5;

0

15    5: 
16    {x,0} := {atom,unknown_event};
17    return {x,0};

1

12    4: 
13    {x,0} := {atom,done};
14    return {x,0};

0

1 7    {x,1} := {x,0}[0];
8    if not is_eq_exact [{x,1},{atom,message}] then goto 5;

0

       {exit,{event_handler,handle_event,1}}

1 0

Figure 5: Control flow graph created from the IR of the
handle_call/1 function

goes deeper, and that we can use this connection to transform the imperative BEAM
IR into a semantically equivalent, but functional IR.

3.5. A short preview of control flow structuring
Similarly to conventional machine code, bytecode control flow is also expressed using
jump and conditional jump instructions. The main advantage of jumps is that they
can be directly executed by the (virtual) machine, while their main disadvantage is
that they can be used to implement unstructured control flow [8].

A CFG is said to be structured if there exist a partitioning over the CFG edge
set, that designates subgraphs such that all of these subgraphs can be mapped to a
high-level structure [6]. From now on, we call these subgraphs regions. If such a
partitioning can not be found, the CFG is said to be unstructured. Then, the goal
of structuring algorithms is to transform an unstructured CFG into a structured
one, and then decompose this CFG into a tree of acceptable regions. By matching
specific subregions to specific high-level structures, this tree of regions then can
be mapped to the syntax tree of a complete program, specified in a high-level
programming language. Unfortunately, at least for the prospective analyzer, the
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erlc Erlang compiler also introduces unstructuredness in the BEAM control flow
which has to be eliminated.

Jumping instructions can be represented as goto-statements (not possible in
Erlang) or function calls (see [2, 5]). Redundant code duplication can also be
employed to eliminate certain jumps, but duplicating every choice node in a DAG
with n binary choice node may result in a tree with as much as 2n choices. Instead,
we have chosen to use special case-by-case analysis techniques, that can produce
control structures that are syntactically closer to the original. If the unstructuredness
is still present after applying these special techniques, we can still fallback to the
less accurate, but more general methods.

To specify some of the procedures applied in this step, we rely on term graph
rewriting (TGR) formalism [9, 16]. The TGR representation is expressive, executable
and has the potential to be used effectively in a formal analysis of the algorithm.

In general, our structuring algorithm performs the following steps:

1. Preliminary detection of non-branching structures, whose corresponding
BEAM CFG features conditionals (eg. list comprehension).

2. Structuring of compound conditions and contracting conditional CFG patterns
into one level n-way condtionals.

3. Local detection of structures, including those that feature branching expres-
sions.

4. Transformation of the CFG to a syntax tree of a functional intermediate
representation, syntactically close to Erlang. Here we identify regions corre-
sponding to expressions, and transform a graph into an expression tree, by
using the SSA information.

Further elaboration on the structuring step of the pipeline can be found in [14].

3.6. Making it functional: Transforming SSA to A-normal
form

The SSA transformation introduces φ-functions on the dominance frontier of the
problematic choice nodes, for each variable that is still considered living at the
frontier point. The evaluation of such φ-functions would require CPUs (or software
interpreters) to keep track of which variable was assigned on which control flow
branch: an operation usually not supported in commonly used hardware and soft-
ware. Therefore, it is up to the compilers (and decompilers) to eliminate φ-functions
from SSA-form before code generation. We will achieve this by transforming SSA
to a functional IR.

It is argued in [2] that SSA, without any modification, can be already considered
a functional program flow description. As a summary, we may basically consider the
SSA as a call graph, where the SSA blocks represent functions, SSA flows represent
call-relations, and φ-assignments specify the formal and actual parameters of these
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[{var,{x,0},3},{var,{x,1},3}]

Block
    []
    
    $END$
    
    ClauseGroup

Block
    [x1#2]
    
    Let
      x0#2 = {atom,done}
    In x0#2
    
    {return,x0#2}

If {test,is_eq_exact,[{var,{x,0},1},{atom,ok}]}

Block
    [x1#4]
    
    Let
      x0#4 = {atom,unknown_event}
    In x0#4
    
    {return,x0#4}

Else

Block
    [x1#2]
    
    Let
      x0#2 = {atom,done}
    In x0#2
    
    {return,x0#2}

If {andalso_expr,
    {test,is_tuple,[{var,{x,0},1}]},

    {andalso_expr,
        {test,test_arity,[{var,{x,0},1},2]},

        {let_expr,
            {bind_expr,{var,{x,1},1},{indexed,{var,{x,0},1},0}},

            {test,is_eq_exact,[{var,{x,1},1},{atom,message}]},
            []}}}

[{{x,0},2},{{x,1},2}]

Block
    []
    
    Fun handle_event [x0#1] =$END$
    
    {cont,step}

[{{x,0},4},{{x,1},4}][{{x,0},2},{{x,1},2}]

{entry,{event_handler,handle_event,1}}

Figure 6: Control Flow Graph after structuring transformations

functions. The two potential target functional representations and their transfor-
mations reviewed by us are the A-Normal Form (ANF) [5], and the Continuation
Passing Style (CPS) [13]. As among our goals were readability and syntactical
resemblance to the original source, we chose ANF, as the base of the intermediate
representation.

3.7. Generating Erlang code from structured CFG
The goal of the code generation phase is to utilize all information gathered until this
point, and finally produce the Erlang source code, that is semantically equivalent to
the BEAM bytecode input, and syntactically resembles the original Erlang source
which was compiled into BEAM.

The main advantage of using a functional IR instead of directly using Erlang,
comes from its simplicity: its less complicated to parse the structured SSA into
ANF, than it is to parse it into Erlang. The ANF-like syntax tree is easier to
traverse and analyze. And again, translating an ANF-like syntax tree to Erlang
syntax tree is less complicated, than it is to parse the structured SSA directly to
Erlang.

While much of the extended ANF can be straightforwardly mapped to an Erlang
syntax tree, there are still expressions in the ANF that have no direct correspondance
in Erlang: for example in Figure 7, the guard features variable binding, which would
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FUN handle_event [x0#1] =
IF

WHEN
ANDALSO

{test,is_tuple,[x0#1]}
ANDALSO

{test,test_arity,[x0#1,2]}
LET x1#1 = {indexed,x0#1,0}
IN {test,is_eq_exact,[x1#1,{atom,message}]} ->

LET x0#2 = {atom,done}
IN x0#2

WHEN
{test,is_eq_exact,[x0#1,{atom,ok}]} ->
LET x0#2 = {atom,done}
IN x0#2

WHEN true ->
LET x0#4 = {atom,unknown_event}
IN x0#4

Figure 7: Functional IR code generated from the SSA, after the
structuring phase

be invalid syntax in Erlang. The detection and removal of these from the guards
can be realized by a simple semantical analysis step, where we infer the patterns
based on the information collected from the variable bindings, or even the guards.

-module(event_handler).
-export([handle_event/1]).

handle_event(X0_1) ->
if

(is_tuple(X0_1)
andalso (size(X0_1) =:= 2
andalso element(1, X0_1) =:= message)) ->

X0_2 = done,
X0_2;

X0_1 =:= ok ->
X0_2 = done,
X0_2;

true ->
X0_4 = unknown_event,
X0_4

end.

Figure 8: The final Erlang source generated
from the functional IR

-module(event_handler).
-export([handle_event/1]).

handle_event(Event) ->
case Event of

ok -> done;
{message, _} -> done;
_ -> unknown_event

end.

Figure 1: Function definition
in the original source dependency

In Figure 8, the final generated Erlang code can be seen. While it semantically
equivalent to the code in Figure 1, and the structure of the generated code resembles
the original, there are still unused variables, unnecessary variable bindings and
redundant conditions, remnants of the BEAM windowing generation, the explicitness
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of the IR, and the unoptimized SSA. Live variable analysis, iterated variable
elimination, and semantic analysis of the condition can be utilized to get the
original and the generated code even closer to each other.

4. Related work

The majority of the literature reviewed by us is concerned with the decompilation
reverse machine code generated from programs originally written in imperative
languages, such as C. Examples of such decompilers are dcc [6], Hex-Rays [10], and
Dream [12]. In general, architecture-dependent machine code is heavily optimized,
features dynamic memory addressing, and does not segment code and data, this is
a more difficult problem in general. On the other hand, as Erlang is a functional
language, we had to extend the convential practices with new techniques, such
the structuring of functional pattern matching expressions (detailed in our current
paper), and the inclusion of the SSA-to-ANF transformation [5].

Similar comparisons can be made between machine code and other bytecode
languages, like the bytecode of Java Virtual Machine (JVM). [15] describes a
grammar-based approach to decompile JVM bytecode. As one of our future goals
is to target different compilers and languages of the BEAM platform, and therefore
we decided for using an approach, which – albeit methodologically less uniform –
promises easier extendability and adaptability in support of future development.

5. Conclusions

In this paper we presented an algorithm, in the form of a decompiler pipeline, for
decompiling BEAM bytecode, that allows Erlang developers to use RefactorErl to
statically analyse bytecode dependencies in a similar way, as if they were represented
in the Erlang language.

The framework achieves this by first analysing the BEAM, and then representing
the collected semantic information in syntactically valid Erlang representation, that
is semantically equivalent, and syntactically similar to the original Erlang sources.

In the decompiler pipeline each function goes through this pipeline independently,
thus it allows us to parallelize the evaluation of our algorithm. The generated
Erlang code, as a representation of the semantics of the original bytecode, is then
readily analysable by RefactorErl.

While the decompiler pipeline together with the presented structuring algorithm
solves the more involved problems of syntax tree recovery, further work still must
be done to increase syntactical accuracy (eg. recognition of match expressions, list
comprehensions, anonymous functions), to guarantee full coverage of all possible
BEAM programs (exception handling), and to extend the framework for other
emerging languages, such as Elixir, that target the BEAM platform.
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