
Simulation Environment for Investigation of
Delay-Insensitivity of Data Flow Structure

Asynchronous Networks and Systems

Attila Nagy, Péter Keresztes

Széchenyi István University, Department of Mechatronics, Győr, Hungary
anagy@sze.hu, keresztp@sze.hu

Abstract

Clocking is one of the most significant problems of VLSI system design.
It is not easy to give a general definition of delay-insensitivity, but it is even
more difficult to verify it for a given digital system. The simulation method
proposed by the authors makes it possible to follow the classical bottom-up
design method from switch level to register-transfer level.

The first step of the proposed designing process is to define a structure
consisting of delta-delay DI components in VHDL. The following step of the
design process is inserting pulse controlled sample-and-hold type switches into
the delta delay architecture. These components are virtual, physically not
realised models, and they are referred to shortly as S&Hs in the paper. If all
gates or cells and their interconnections were represented by the S&Hs, and all
possible sequences including simultaneous activations executed, a simulation
with positive results could be considered a verification of delay-insensitivity.
The paper presents the special VHDL-FLI simulation environment developed,
the design and simulation process, and shows several interesting problems in
which the author’s method played an important role.

Keywords: Delay-insensitive (DI) asynchronous networks, Simulation, VLSI
design

MSC: AMS classification numbers

1. Introduction

The special field which the paper discusses appeared in the middle of the last
century, and it was referred to as the speed-independence of logic circuits. De-
lay of logic gates dominated over the delay of wires and interconnections at that
time. The gate delays were the main source of many disadvantages (static and
dynamic hazards, critical race situations) of the classical asynchronous circuits.

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 203–210

doi: 10.14794/ICAI.10.2017.203

203

Müller investigated autonomous asynchronous circuits, determined the conditions
of speed-independence, and created his famous C circuit, which is a simple classical
asynchronous network with logical hysteresis, and later became the key component
of the new DI networks and systems. Also Müller introduced the design method
of DI combinational circuits, which is called DIMS. (Delay-Insensitive Minterm
Synthesis). Müller-C is not only the most important components of DIMS, but
of a later version of DI combinational networks, NCL (Null Convention Logic)
too. Another approach was the research of DI communication protocols between
interconnected black-box models. Verhoeff gave a general solution for DI binary
codes, van Berkel combined them with his four-phase asynchronous communication
protocol.

The conditions of delay-insensitivity were the subject of many works. Udding
[1], Dill [2] and others used several formal methods as trace theory and theory of
communicating sequential processes.

In the first decade of the new century, finally a commonly accepted version of
DI modules took shape, with the following features:

• Active output and passive input for data represented with delay insensitive
code

• One of the two handshake signals, signal request is hidden in data.

There is an analogy between this version of DI networks and the behaviour of
static data flow graphs introduced by Dennis [3, 4].

Martin [5] investigated the limitations of delay-insensitivity. From his work,
it became clear that the number of DI networks is absolutely limited. A much
larger number of networks designed carefully can be considered so called quasi
delay-insensitive.

2. Simulation with S&H switches

In the last decades some simulation methods were developed for checking the delay
issues related to the asynchronous network. None of them is perfect, however.
Some of them are too simple or too conservative [6], while others require huge
computation effort.

The method presented in this paper can support the classical bottom-up design
method of the quasi delay-insensitive (QDI) networks. Among several advantages
of these circuits, the most important one is that the DI circuits can work properly,
independently from the delays of wires and gates. Apart from some very simple
circuits it is not possible ensuring the delay-insensitivity for each gate and wires. In
order to be able to verify the delay-insensitivity of certain wires or gates, the delay
elements of these components can be modeled by simple S&H switches, which let
through the signal from their input to their output. The replaced elements can be
considered delay-insensitive: 1) if for each possible switching sequence the circuit
works properly and 2) a changed value on the input of a S&H switch must not

204 A. Nagy, P. Keresztes

change back before it is passed by the switch. For not very complicated circuits,
the S&H switches can be actuated manually, but for more sophisticated circuits,
the checking process requires an automatism.

In the next subsections, two examples are shown which demonstrate how the
proposed method works in case of manually activated S&H switches. Section 3
briefly presents the automatically activated S&H switch implementation using
VHDL models of the DI circuits and the Foreign Language Interface (FLI) of the
Modelsim.

2.1. A simple example for application

Truth table of a very simple QDI unit is given in Table 1 The function is a code
conversion between two DI codes, namely a 2-of-3 and a code represented by two
dual rail variables. The wires of input x are X2,X1,X0, and the wires of output vari-
ables y1 and y2 are Y11,Y10,Y01,Y00. The signals ax and ay are the acknowledge
signals of the input and the output respectively.

x X2 X1 X0 y1 y0 Y11 Y10 Y01 Y00
0 L H H 0 0 L H L H
1 H L H 0 1 L H H L
2 H H L 1 0 H L L H

Table 1: Truth table of 2-of-3 – two variable dual-rail code con-
verter

The behavioural VHDL description is shown in the first point of the AP-
PENDIX. The signal assignment statements of this description are free of so called
after clauses, so it can be considered a pure delta-delay model. This behaviour
mirrors the causality between signal transitions. If a transition is a direct conse-
quence of another, the simulation shows a single DELTA delay between them. If
the causal chain is longer, the multiplied DELTA delay shows the length of the
chain.

Figure 1 shows the application of our simulation method for the verification of
delay-insensitivity of BDM (Behavioural Delta Model), i.e. a simulation which has
shown that the correctness of the communication remains unaffected by the delays
of buses to and from a transmitter and a receiver. Note several properties of the
VHDL abstract receiver model. If ax is low, all the three push outputs of the S&H
switches of it goes high, but if you activate two pass inputs, the third push output
goes low.

The following step of a bottom-up designing process is to build up the gate
level architecture of the code converter. On Figure 2 the structure of gate level
implementation is shown. The triplet of the three-input Müller-C units and the
3 input OR constitute a completion detector for the 2-of-3 code, which drives the
acknowledge signal ax. At the same time the C-triplet is an asynchronous register,
the outputs of which are connected with OR gates of output part.

Simulation Environment for Investigation of Delay-Insensitivity of . . . 205

Figure 1: Simulation model for verification of delay-insensitivity of
BDM inserted in a real delay communication environment.

(ppx i : push px i button; px i : pass signal x i)

Figure 2: Gate level structure of code converter with 3 input
Müller-C components

The simulation of the gate level structure completed with S&H switches (Fig-
ure 3) has shown that the gate level implementation is not delay-insensitive, it is

206 A. Nagy, P. Keresztes

quasi delay-insensitive, if the branch of input X1 to the upper and lower C units
can be considered an isochron branch. The following pass-sequence leads to a
communication error: pX0 ;pX1 ;pX1f ;pX1s;pay ;pX1 ;pX0 ;pX1f ;pay ;pX2 ;

Here pX1f is the pass input of the S&H representing the fast wire, pX2s is the
pass input of the S&H representing the slow wire of the branch of X1.

Figure 3: Example for simulation of slow wires

2.2. Verification of a new MERGE unit for QDI ring applica-
tions

The simulation using the new delay modeling method has made it possible to find
a new QDI MERGE circuit, the application of which makes a QDI multiplexer,
used as an input stage of a ring, redundant. QDI ring plays an important role in
pipelines executing iterative and repetitive calculations. The critical feature of the
ring with a conventional MERGE unit can be that the feedback should be faster
than the initial state setting communication, so there is a communication overlap on
the inputs of the register-level scheme given in Figure 4. Evaluating the simulation
results has shown that the acknowledge signal asa has to be faster, than the enable
signal esab. This demand can be satisfied in a careful layout design, independently
from the other parts of the ring. So the delta-model of this carefully designed
MERGE unit is very simple: An additional DELTA-delay has to be inserted into
the structure, consisting of DELTA models of components. (esab <= asa;)

Simulation Environment for Investigation of Delay-Insensitivity of . . . 207

Figure 4: A new MERGE unit for QDI ring applications. AR :
Asynchronous Register, PAR : Presettable Asynchronous Register,

CC : Column of C units

3. Automatic simulation of VHDL models

Because of the rapidly increasing number of the possible switching sequences,
simulation with manually activated switches strongly limits the number of S&H
switches. In order to be able to test the delay-insensitivity of more complicated
circuits, the authors developed a simulation environment for automatic switching.
Figure 5 shows the internal states of the simulation. In spite of the simple concept
using a recursive backtracking program, the realization is quite complicated. The
system goes to the next state along the solid lines when a S&H switch changes its
state. The dashed lines represent the restarting of the simulation from a certain
moment. At the beginning of the simulation in Idle state when the input of a S&H
switch changes, the FLI program terminates the simulation and saves the full state
of the simulation in order to be able to restart the simulation from this moment
several times. In Collect state the program collects all events whose switching se-
quences have to be permuted. After the Collect phase the simulation is restored to
the Break moment and the outputs of the switches are Driven by the FLI program.

208 A. Nagy, P. Keresztes

Idle

Break

Collect

Drive

Drive

done

save simulation

save wakes

restore simulation

restore wakes

Finished

{wake[k]=1}
{TOS.pending[k]=1}

[some TOS.pending]

{new stack entry;

clear wake;

wake[k]=1}

{wake[k]=1}

[k!=TOS.next]

[(k==TOS.next) and (some wake)]

[(k==TOS.next) and (not any wake)]

{ouput[k]=input[k];

TOS.next = next pending}

{ouput[k]=input[k]; TOS.next=next pending;

new stack entry; wake[k]=1}

[stack is empty]

{free top stack entry ’TOS’}

{new stack entry;

clear wake;

wake[k]=1}

restore simulation

restore wakes

restore simulation

restore wakes

Figure 5: Internal states of the FLI program

4. Appendix

4.1. VHDL description of the simple example

entity DI_CODE_CONVERTER is
port(X2, X1, X0 : in bit;

Y11, Y10, Y01, Y00: inout bit;
ax : out bit;
ay : in bit);

end;
architecture BDM of DI_CODE_CONVERTER is
begin

process(X2, X1, X0, ay)

Simulation Environment for Investigation of Delay-Insensitivity of . . . 209

begin
if ay = ’0’ and X2 = ’0’ and X1 = ’1’ and X0 = ’1’ then

Y11 <= ’0’; Y10 <= ’1’;Y01 <= ’0’; Y00 <= ’1’; ax <= ’1’;
elsif ay = ’0’ and X2 = ’1’ and X1 = ’0’ and X0 = ’1’ then

Y11 <= ’0’; Y10 <= ’1’; Y01 <= ’1’; Y00 <= ’0’; ax <= ’1’;
elsif ay = ’0’ and X2 = ’1’ and X1 = ’1’ and X0 = ’0’ then

Y11 <= ’1’; Y10 <= ’0’; Y01 <= ’0’; Y00 <= ’1’; ax <= ’1’;
elsif ay = ’1’ and X2 = ’0’ and X1 = ’0’ and X0 = ’0’ then

Y11 <= ’0’;Y10 <= ’0’; Y01 <= ’0’; Y00 <= ’0’;ax <= ’0’;
end if;
end process;

end BDM;

4.2. VHDL statements for S&H switches
Let the ports of a switch be i, (input), o, (output), pi, (pass input) and ppi (push
pass input). Two signal assignment statement can define its operation, as follows

o <= i when pi = ’1’ else o;
ppi <=’1’ when o /= i else ’0’;

References

[1] J.T. Udding, A formal model for defining and classifying delay-insensitive circuits
and systems. Distributed Computing, 1986, 1:197-204.

[2] D.L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. The MIT Press, Cambridge, Mass.,1988. An ACM Distin-
guished Dissertation 1988.

[3] J.B. Dennis, The Evolution of State Data Flow Architecture. Advanced Topics of
Data Flow Computing. J.L. Gaudiot and L.Bic, eds., Prentice Hall, 1991

[4] P.Keresztes, L.T.Kóczy, A.Nagy, G.Rózsa, Training Elecctrical Engineers
on Asynchronous Logic Circuits Based on Constant Weight Codes. Proceeding of
IEEE Africon 2011, Livingstone, Zambia, no : NF002631, DOI: 10.1109/AFR-
CON.2011.6072041, pp. 1-7

[5] A. Martin., The limitation to delay-insensitivity in asynchronous circuits. In Pro-
ceedings of the Conference an Advanced Research in VLSI, April 1990.

[6] J.A. Brzozowski, Delay-insensitivity and ternary simulation. Theoretical Computer
Science, 2000, 245:3-25

210 A. Nagy, P. Keresztes

