
Performance Issues with Implicit
Resolution in Scala

Gergely Nagy, Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics,
Dept. of Programming Languages and Compilers

njeasus@caesar.elte.hu, gsd@elte.hu

Abstract

Scala is an emerging programming language that supports multiple pro-
gramming paradigms. It has been designed to support high levels of ex-
pressiveness and to allow writing concise code. To achieve this, it supports
many features, including but not limited to macros, DSLs as well as implicit
type conversions and implicit argument lists to functions. Due to the wide
range of language features and the advanced static type system, the Scala
compiler possesses a non-trivial implementation. We have analyzed the per-
formance characteristics of the compiler and have found that the major part
of compilation time is spent on typing syntax trees. This includes implicit
resolution, thus we have focused our efforts on investigating this specific lan-
guage feature. We have analyzed how typical usage patterns that involve
implicit resolution affect compilation times. Based on this analysis we have
managed to assemble a list of recommendations for programming style and
code management that allow programmers to leverage implicits to their full
potential, but lead to drastically reduced compilation times.

Keywords: implicits, implicit resolution, Scala programming language, com-
pilation performance

MSC: 68N15 Programming languages

1. Introduction

Scala is one of the most popular emerging multi-paradigm programming languages.
Supporting both object-oriented and functional paradigms, Scala offers the devel-
opers a higher abstraction level to solve everyday programming tasks. One of the
most exciting features of Scala is the complex type system: the compiler is able
to detect more invalid constructs, even in higher semantic levels. For example,
variance checks force the developer to use inheritance rules correctly [1, 2]. The

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 211–223

doi: 10.14794/ICAI.10.2017.211

211

advanced type system also allows the programmers to write more succinct code by
using type inference or implicits. This is not only related to convenience, but also
to make the code safer, more maintainable and increases developer effectiveness.

Unfortunately, the more complex type system has its cost. The complexity
of the compiler itself is higher, and not independently from this, the time spent
with compilation is excessive. During the development process, programmers are
unnecessarily blocked by waiting for the compiler. This is also the case for incre-
mental builds when only a small fragment of the code has been modified. This has
a negative impact on the development process. As programmers are very sensitive
to such interruptions, the wasted time is not only related to the compilation time
itself, but also to the cognitive disruption it causes. Industry reports increased
cost factors related to this phenomenon. Therefore it should be one on the list of
primary importance to fix this problem.

In this paper, we analyze the root cause of slow compilation, supported by
detailed measurement values. For this purpose we implemented a Scala compiler
profiler toolkit. We show the main factors in implicit resolution. Based on the
results, we have experimented with various solution candidates, including (tempo-
rary) relaxation of implicit resolution as well as providing coding guidelines.

The paper is structured as follows. In the first section we give a summarized
overview of implicits in Scala: we describe the three types of them and give code
examples. In the next part we discuss the issues with implicits. Firstly, we intro-
duce how Scala typing works, then describe implicit resolution. In section four, we
outline the problems with profiling the compiler, then introduce our solution to the
problem. In the next section we detail our findings with regards to the performance
of implicit resolution in the current Scala implementation. Finally, in section six
we go over possible solutions to the problem and discuss the feasibility of each of
them. We close the paper by summarizing our findings.

2. On Implicits in Scala

In programming terminology, the term ’implicits’ covers a wide area, but everything
related to it is true to the original meaning of the word. It means that various enti-
ties can be omitted from the software code and a member of the involved toolchain
(usually the compiler itself) can resolve the explicit values for these entities. They
have an important role in making the code more succinct, easier to understand
and maintain. Implicits can take several forms, including implicit types, implicit
converters or implicit argument lists. All of these are supported in Scala through
the implicit keyword.

In this section we will discuss what these kinds of implicits mean and how they
can make the code cleaner. As Scala is a block-structured programming language
with strict scoping rules, implicits naturally need to adhere to these. To let the
compiler automatically apply any implicits, they need to be in scope; they need to
be either defined in the current scope or be imported into it. They are resolved
when the compiler encounters a typing error. If such an error happens it doesn’t

212 G. Nagy, Z. Porkoláb

simply quit after reporting to the output, but tries to find an entity marked with
the implicit keyword that would correct the error.

2.1. Implicit classes
Implicit classes are classes that have their primary constructor avaiable for implicit
conversions when the class is in scope[3]. They are a form of implicit converters,
as the types of the parameters to their primary constructor are converted to them-
selves. Usually they are used to enrich APIs. One of the most representative
examples is RichString:

1 c l a s s RichStr ing (va l s e l f : S t r ing) {
2 de f apply (n : Int) : Char
3 de f c a p i t a l i z e () : S t r ing
4 .
5 .
6 .
7 }

Listing 1: Implicit class example

There are some restrictions that apply to implicit classes:

• They must be defined inside another trait, class or object

• They may only take one non-implicit argument in their constructor

• There can’t be any other entity with the same name in scope

These restrictions are in place to make resolution unambiguous.

2.2. Implicit argument lists
In functional languages, methods can take multiple argument lists. In Scala, an
argument list can be marked as implicit[4, pp. 485], meaning that the compiler
will try to find values for the parameters implicitly, without explicitly expanding
the given argument list; if the developer wishes so, they can still have the values
explicitly defined. Implicit argument lists are often used in DSLs and high-level
APIs to let developers omit repeatedly passing a common value in a code block (be
it a class or a method). A good example is Scala’s Future implementation, that
needs an ExecutionContext to be passed:

1 ob j e c t Future {
2 de f apply [T] (body : => T) (imp l i c i t execctx : ExecutionContext) = { . . . }
3 }

Listing 2: Implicit argument list example

The usual usage pattern for Futures would require passing in the same
ExecutionContext each time a Future is used. Instead, the developer can cre-
ate an implicit val in the given scope that the compiler will use to resolve the
second argument list.

Performance Issues with Implicit Resolution in Scala 213

2.3. Implicit methods
Implicit methods take a simple form of definition[4, pp. 489]:

1 imp l i c i t de f int2Range (i : Int) : Range = { . . . }

Listing 3: Implicit method example

Their application is a little more involved. The compiler will try to apply a method
of type S => T marked as implicit when

• An expression e is of type S and S does not confirm to the expression’s
expected type T

• A selection e.m with e of type S if the selector m does not denote a member
of S

In simpler terms, if an expression doesn’t have the correct type at its place of use,
or if a method or field is accessed on an instance of a type without the given name,
the compiler will look for the correctly typed implicit method. As one can see,
implicit methods can be used as type converters without bloating the code with
explicit method applications.

3. Issues with Implicits

In the previous section we have described the three types of implicits in Scala. It can
be seen easily that resolving implicits imposes a non-trivial algorithmic complexity.
In this section we will give a brief introduction to the Scala compiler and how it is
organized; we will also discuss the basic typing features that the language supports,
then we will detail the rules and high-level implementation of implicit resolution.

3.1. Typing in Scala
As Pierce writes in his book, “a type system is a syntactic method for automatically
checking the absence of certain erroneous behaviors by classifying program phrases
according to the kinds of values they compute”[5]. That is, the type system of a
language determines how easy it is to use it to write bug-free software. The more
the type system covers, the easier it is to write correct programs using it. Functional
and object-oriented programming put a lot of emphasis on their type systems and
Scala is no exception. It has a strong, static type system [4, pp. 58]. The following
advanced features are supported on top of more common object-oriented features:

• Parametric polymorphism. Generic programming: when algorithms are im-
plemented without concrete types.

• Type inference. Certain type annotations don’t need to be present explicitly,
the compiler can deduct them based on the context. In Scala, this only works
for local types.

214 G. Nagy, Z. Porkoláb

• Existential quantification. When the concrete type can be omitted, only its
existence matters.

• Variance. In parametric types, subtyping rules can be applied based on the
sub or super types of the type parameter.

• Structural types. Structural types can be used to describe what form a type
needs to support instead of referring to it by a specific symbol. This is also
known as “duck typing”.

• Type views. Type view definitions can be used to define how a user of a given
type can substitute it.

As one can expect, these increase the complexity of the language as well as its
implementation. The current Scala compiler consists of many phases (based on the
version, between 13 and 30) [6]. One of these phases is the typer, which handles
checking type annotations as well as runs the type inference algorithms. This
includes implicit resolution. When the typer meets an error, it cannot simply give
up typing the given piece of AST. Based on rules that we will describe in the next
section, it needs to look for implicits that might resolve the error. This further
increases both the complexity and the required resources needed to compile Scala
code.

3.2. Implicit resolution
Implicit resolution happens during the type phase. There is a well-defined set of
rules the compiler uses to look for applicable candidates[4, pp. 482], then selecting
one of these candidates. These rules can be summarized as follows.

• Marking rule. Only entities marked as implicit can be considered.

• Scope rule. An inserted implicit conversion must be in scope as a single
identifier, or be associated with the source or target type of the conversion.

• One-at-a-time rule. Only one implicit is applied by the compiler.

• Explicits first. This seem trivial, but if a value is provided explicitly, it must
be used - the compiler won’t try to apply implicits if typing succeeds.

• Occasion rule. Implicits are only used in three places: conversions to an
expected type, conversions of the receiver of a selection and with implicit
parameters.

• Naming rule. The names of implicits don’t matter.

The actual implementation of implicit resolution[7] is fairly close to the rules
listed above. When the typer fails to type an AST, it will start the implicit res-
olution process. In this, there is a set of possible candidates that are marked as
implicit. This set is then reduced in a loop until only one implicit remains –that
fixes the type error– or the resolution fails, which means that the typing error is
valid and the compiler needs to abort.

Performance Issues with Implicit Resolution in Scala 215

4. How we measured

Finding performance bottlenecks in software is not always easy as the complexity of
the software increases. The Scala compiler is possibly one of the most complicated
Scala products. The code relies on the standard library heavily to implement ASTs.
For this reason, regular JVM-based profiling tools don’t necessarily identify high-
level hotspots, but rather “low-level” APIs, such as list append (List.::) and hash
value computation. This led us develop our own methodology to understand which
parts of the compiler are slow to run.

Figure 1: Average distribution of time spent on each compile phase.

4.1. Compiler plugin
We have developed a compiler plugin that measures the time it took finish each
compile phase. There are phase groups that cannot be interrupted by custom
plugins because the intermediate AST transformation would break. Due to the
nature of the compiler, we then needed to appropriately aggregate the results for
larger codebases. These measurements let us notice that the compiler, depending
on some characteristics of the source, spends between 30% and 50% of its time in the
typer phase. The compilation time distribution of a large, proprietary codebase
can be seen on figure 1. Apart from this software we have also analyzed Scala
itself –the compiler and the language’s standard library. Both of these provided
the same performance characteristics, and made it easy to see that the biggest
performance improvement can be achieved by enhancing the typer. Since it also

216 G. Nagy, Z. Porkoláb

includes resolving implicits, we have taken a closer look at this part, and recognized
it as a single point for possible improvements. To test our hypotheses, we have
developed a test suite that generates synthetic code and it can be analyzed using
the compiler plugin. The test suite allowed as to easily change certain aspects of
implicit usage: the in-scope availability of implicits and their usage.

5. Our findings

In this section we will discuss our findings on performance characteristics of the
implicit resolution in the Scala compiler. We will describe the two main factors
of it, namely how many implicits are in a given scope and the amount of implicit
usage. We will present data that steered us towards trying to ease up the search
criteria and then providing some coding guidelines and practices with regards to
implicit usage.

Figure 2: Compilation times with constant available implicit and
increased implicit usage.

5.1. Implicit usage

The most basic variable to change is the number of implicit calls the compiler has
to resolve. For the following tests we have fixed the number of available implicits
in the given scope, then increased the number of required implicit applications.
On figure 2, the blue bars represent the number of implicit uses, the dotted lines
display how many implicits are in scope, between 1 and 1000. As it can be seen,
there is no high correlation between the two variables: increasing the implicit usage

Performance Issues with Implicit Resolution in Scala 217

doesn’t affect compilation times to a great amount – the change can be attributed
to the growing source code alone.

5.2. Available implicits in scope

Based on the rules listed in section 3.2, another dimension to investigate is the
number of implicits available when the compiler needs to resolve them. We have
generated code with an increasing number of implicits, while the actual usage of
implicits remained constant. The aggregated analysis can be found on figure 3.
As previously, the blue bars show the main factor we are testing: the number of

Figure 3: Compilation times with constant implicit usage and in-
creased available implicits.

implicit definitions in scope. The dotted lines are now used to express how many
implicits are actually used in the code. It is easy to see the direct correlation
with the two factors for each test case. As we increase the set of definitions in
which the compiler needs to search for implicit candidates, the typer phase takes
proportionally longer.

5.3. Conclusions

Based on the performance analysis we have described in this section, we can draw
the conclusion that the main factor that affects the performance of implicit resolu-
tion, and more widely, the typer phase in the Scala compiler, is going through all
the available definitions in the scope to search for implicit candidates. There are
two possible ways of optimizing this:

218 G. Nagy, Z. Porkoláb

• Make analyzing each item faster, thus applying the operation on the whole
set faster

• Decrease the size of the input set

In the following section, we will consider both approaches and describe what we
have observed.

6. Approaches to improve implicit resolution perfor-
mance

In this section we will go over the two approaches we have tried to better the Scala
compiler’s performance for implicit resolution. As we have seen in the previous
section, we can make the candidate analysis faster or we can reduce the set of
candidates that we need to consider. We will describe these approaches in the
respective sections.

6.1. Relaxed search criteria
The inferring algorithm that is used by the implicit resolution codepath in the
Scala compiler needs to decide if two types are compatible with each other in the
meaning of the Liskov substitution principle[8]. This problem exposes a non-trivial
algorithmic complexity, and based on some profiling information, takes considerable
amount of time for every typing error. The implementation[9] has a way to relax
(or shortcut) the search algorithm so it doesn’t perform a full type check, but
rather uses the much simpler isPlausibleSubtype method. Interestingly enough,
the incoming parameter has been denoted as fast: Boolean, making it a trivial
choice for experiments. We have assumed that this shortcut could be used for
some usages of the compiler, for example for incremental compilations used in
IDEs. Although it would not solve the performance issue once and for all, it could
provide big enough improvements for software developers. We have compiled our
own version of Scala and used this modified version in our performance tests. On
figures 4 and 5, we can see that relaxing the search criteria does improve implicit
resolution times significantly. As the line charts display, there is not much of a
difference between explicitly applying the implicit function and letting the compiler
find it as a candidate. We have managed to build the modified Scala version and
run our performance tests with it, but as a semantic correctness test, we have
also tried to compile the same version of compiler code and run the enclosed test
suite with it. Unfortunately we have run into several issues. Resolving implicits
involving existential types[10] has proven to be problematic:

[error] [...]/scala\trytobuild/scala/src/library/scala/collection \
/parallel/ParIterableLike.scala:527: type mismatch;

[error] found : scala.collection.parallel.IterableSplitter[T]
[error] required: ?{def assign(x$1: ? >: \

Performance Issues with Implicit Resolution in Scala 219

Figure 4: One explicit function call and one implicit resolutions
with varying number implicits in scope.

Figure 5: 1000 explicit functions call and 1000 implicit resolutions
with varying number implicits in scope.

scala.collection.generic.DefaultSignalling with \
scala.collection.generic.VolatileAbort): ?}

[error] Note that implicit conversions are not applicable because \
they are ambiguous

We have tried to work around these issues by not running the relaxed algorithm
for these existential types, but this has proven no use. As one would assume,
resolving the issue has turned out to be much more complex than we could solve,
so we have abandoned this experiment.

220 G. Nagy, Z. Porkoláb

6.2. Coding patterns
As discussed previously, reducing the size of the candidate set for implicit resolution
can be another useful approach. For this reason, we would eliminate all useless
implicit definitions before running the typer phase. We have considered creating a
programmatic way for removing these definitions before right the typer meets them,
but concluded that we would probably create an algorithm that is at least as slow
as the one in the compiler. Doing this would probably not help the performance.

Instead, we have realized that the most trivial way to reduce the number of
available implicits is by not having them in the software code. We have examined
several large software projects written in Scala, and identified usage patterns for
implicits that worsen the performance, but don’t really help the developer or im-
prove the code. With a little more care, these can be changed resulting in cleaner
and faster-compiling code. We have created some coding patterns and guidelines
that are easy to follow. They not only help with the performance, but adhering to
them can possibly reduce implicit-related errors that usually turn out to be hard
to find and debug.

• No file-level imports for implicits. A lot of times, imports are moved to the
top of a source file either by IDEs or developers themselves. Normally, this
improves neatness of the code, but with implicits, this necessarily bogs down
the compiler. Every implicit needs to be added to the candidate set and
for larger files that contain multiple classes, the size of the list of imported
implicits can be significant. If there are no implicits imported at the file-level,
the mixture of these classes will have no effect on each other.

• Import implicits only in the block they are being used. Minimizing the scope
for implicits should be the ultimate goal. Since Scala is a block-structured
language, it supports imports in all blocks, and due to the visibility rules,
these imports can’t escape the block. If implicits are only imported in meth-
ods or bodies of structures where they are used, they cannot be applied
–accidentally or not accidentally– in other places, and the compiler doesn’t
need to check them for every type error outside of the block.

• Don’t wildcard-import implicits. Importing all contained entities from a name-
space is often useful, but it can accidentally import many implicits. The most
trivial solution to the problem is only importing the necessary definitions by
name.

• Create implicits in smaller namespaces. Providers of implicits should try to
reduce the number of them in their namespaces. This encourages the previous
point and lets users of implicits selectively add them to their code. This also
better documents code as it’s easier to track down the intent for a given
implicit.

• Don’t create silver-bullet type collections of implicits. This reinforces the
previous pattern, but it’s important to highlight this as many patterns we

Performance Issues with Implicit Resolution in Scala 221

have observed dumped all seemingly related implicits in on huge namespace
that got imported in many places. This should be avoided by both the
providers and the clients of implicits.

7. Conclusion

We have discussed the performance characteristics and issues of implicit resolution
in Scala. We have started by introducing implicits, describing the tree kinds and
giving examples. We have then given a summary of how implicit resolution works,
and listed the related performance issues. We have introduced our high-level pro-
filer and test suite that were used to correctly measure compilation times of various
use cases. We have examined a great number of instances of synthetic code; we
have analyzed and presented the collected data. We have arrived at the conclusion
that the main effect on performance is the locally available implicits form which
the compiler needs to choose. We have given two possibilities on how this could
improved: by either improving the performance of analyzing each item, or by re-
ducing the starting set. As the first approach, we have discussed how speeding up
the analysis could be done by relaxing the search criteria. We have modified the
compiler then ran it through our test suite. This has shown great results, but un-
fortunately we have seen non-trivial compilation errors while compiling the Scala
codebase. We haven’t been able to resolve these issues. For a second improvement,
we have realized the trying to programmatically eliminate bogus implicits would be
too costly, so instead we have identified certain coding patterns and guidelines. We
have listed five rules that are easy to follow, and they can help with significantly
reducing the work the compiler needs to accomplish during implicit resolution. Not
only this, but adhering to these suggestions could greatly improve accidental and
hard-to-debug issues related to implicits. In the future, we would like to introduce
an IDE extension that would point out instances of these rules in the code to help
with identifying and fixing certain issues in real time.

References

[1] G. Castagna, “Covariance and contravariance: Conflict without a cause,” ACM Trans.
Program. Lang. Syst., vol. 17, pp. 431–447, May 1995.

[2] F. Weber, “Getting class correctness and system correctness equivalent - how to get
covariance right,” 1992.

[3] “Scala online documentation.” http://docs.scala-lang.org/overviews/core/
implicit-classes.html, 2015.

[4] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: Updated for Scala
2.12. Artima Press, 2016.

[5] B. C. Pierce, Types and Programming Languages (MIT Press). The MIT Press, 2002.

[6] “Scala github repository.” https://github.com/scala/scala/blob/2.12.x/src/
compiler/scala/tools/nsc/settings/ScalaSettings.scala#L130, 2017.

222 G. Nagy, Z. Porkoláb

[7] “Scala github repository.” https://github.com/scala/scala/blob/2.12.x/src/
compiler/scala/tools/nsc/typechecker/Implicits.scala, 2017.

[8] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Trans.
Program. Lang. Syst., vol. 16, pp. 1811–1841, Nov. 1994.

[9] “Scala github repository.” https://github.com/scala/scala/blob/2.12.x/src/
compiler/scala/tools/nsc/typechecker/Implicits.scala#L536, 2017.

[10] A. M. Pitts, “Existential types: Logical relations and operational equivalence,” in
Automata, Languages and Programming, pp. 309–326, Springer Berlin Heidelberg,
1998.

Performance Issues with Implicit Resolution in Scala 223

