Proceedings of the 10™ International Conference on Applied Informatics
Eger, Hungary, January 30-February 1, 2017. pp. 271-278
doi: 10.14794/ICAI1.10.2017.271

Symbol Clustering: Resolving ambiguous
symbol references of large-scale C / C++
projects based on linkage information

Richard Szalay®, Zoltan Porkolab®, Daniel Krupp®

“Eo6tvos Lorand University, Faculty of Informatics,
Dept. of Programming Languages and Compilers
szalayrichard@inf.elte.hu, gsd@elte.hu

YEricsson Ltd.
daniel.krupp@ericsson.com

Abstract

Name mangling — constructing linkage name by concatenating enclosing
namespace and class names, function and template parameter information — is
the main tool in C++ to make distinction between separate symbols declared
with the same identifier, to resolve function overloading and others. The same
mangled name in different translation units forming a single executable should
refer to the same symbol. Not surprisinly, many development framework and
code comprehension tool utilizes mangled name identity to implement actions
like “go to definition” or “all references”. However, in large projects, where
multiple binaries are constructed, mangled names can be ambigous. In this
paper we show, how relevant is this problem, and how the most important
development tools are handling it. We describe our clustering—based algoritm
to show how precison can be improved in symbol resolution. We implemented
our algorithm as a working prototype to show the practical possibilities. Our
solution can be utilized via the Language Server Protocol to improve the
functionality of third-party developmnet tools.

Keywords: Mangled name, C++ programming language, Linking
MSC: 68N15 Programming languages

1. Introduction
Large scale software systems are scaling up to million lines of code. The source

code of the Linux kernel is around 17 million lines of code. Telecom systems,
developed by hundreds of designers over modre decades are is similar size. It is

271

272 R. Szalay, Z. Porkoldb, D. Krupp

Xerces [21] 18547 63167 14933 11123 37111
(19, 0.1%) (348, 0.5%) (23%) (18%) (59%)

CodeCompass [1] 337833 622220 229737 127864 264619
(143, 0.04%) (473, 0.07%) (37%) (20%) (43%)

LIVM [19] 1793978 41545086 1213123 708156 2623807
(334, 0.02%) (16469, 0.4%) (27%) (16%) (57%)

Linux [22] 70579 411691 33746 66228 311717
(503, 0.7%) (11074 (2.7%) (8%) (16%) (76%)

TSP [20] 410946 2091578 377393 321964 1392221
(9721, 2.3%) (194118 9.3%) (18%) (15%) (67%)

Table 1: Number of functions discovered and found ambiguous in
our tests projects (in parantheses the number of ambiguous names
and nodes)

easy to see, that navigation in these large codebases are extremely challenging
and requires tool support. Modern development frameworks [1, 2, 3, 4] and code
comprehension tools [5, 6] provide advanced navigation features, like go to definition
which jumps to the place of the definition or all references which iterates all places
of reference of a given symbol. Unfortunately, we found that current development
and comprehension tools are not exact in these functionalities and make mistakes
in certain circumstances.

The main reason of the probem is that many current tools implemented the
mentioned features based on matching mangled names (see Section 3) which al-
lows to be ambiguous when multiple executables are produced to form the released
product. The prevalence of the problem was tested on a group of open source
projects. It appears that, statistically, a considerable ratio of symbols (0.5 — 10%)
are affected — thus the problem is not negligible for its impact on code compre-
hension and development time when developers have to resolve symbol references
using their internal and external knowledge instead of a proper tool solving the
problem for them.

To solve the ambiguity problem, in this paper we describe a new method to
group the mangled names into clusters, based on the linking information, i.e. how
they used by the linker to form the resulting binaries. Mangled names belonging
to the same cluster should refer to the same symbol; and they are distinct from
symbols with identical mangled names classified to different clusters. This way, we
were able to significantly reduce the possible ambiguity in symbol resolution.

We implemented the method as part of CodeCompass [7] — an open source
software comprehension tool — where symbol correlation is used in a number of
functionalities. We evaluated our method using CodeCompass to parse various
open source C+—+ projects and measured different implementation variants on the
run-time and storage expense. Our final solution has a minimal overhead on the
discovery process, therefore it is applicable for various development and code com-
prehension tools.

This paper is organised as follows: In Section 2 we describe the compilation
and linking process of C and C++ projects. Here we introduce the notion of

Symbol Clustering: Resolving ambiguous symbol references . . . 273

mangled names. The ambiguity of mangled names and the One Definition Rule is
discussed in Section 3. Here, we also overview some of the current development and
comprehension tools regarding the handling of the problem. Our solution based on
symbol clustering is introduced in Section 4. Our paper concludes in Section 5,

2. Building C/C++ programs

Software products written in C or C++ language take multiple steps to be built.
First of all, a translation unit, usually a source file is handled by the preproces-
sor which, amongst other things, includes header files containing more symbols
(usually declarations and inlinable definitions) to the to-be-compiled code. The
preprocessor can add and remove blocks of the source code (conditional compi-
lation) and textually change tokens, inplacing different code parts (preprocessor
macros). This preprocessed code, which is still a simple text file, is then compiled
into an object file. Thus, at this point, multiple object files could be created from
the same initial source file, albeit with possibly different contents based on build
configuration parameteres, such as using different include paths for the headers, or
defining different macros — the most trivial example would be enabling log emission
from certain functions in a debug build.

A set of object files is then linked together by the linker to form a binary
executable or a library. The linker takes object files and other libraries to form
this output binary. Built libraries, which are results of a linking command, can
also be used in the creation of other binaries. Thus, the potentially vast number
of different object files could be used for multiple binaries, e.g. using 32-bit and
64-bit architectures or built for different system libraries (such as different versions
of networking stacks or databases).

Various tools exist which allow the instrumentation of the pipeline in a way
that the actual executed commands are available for other software to read and
understand, such as the JSON compilation database format [8].

In the case of the C++ programming language, the same name can be used
in multiple places of the program for identifying different objects. Typical func-
tion names, like init, operator«, or operator== are recurring between different
classes, as well as some common attributes. The overloading is a language element
to define separate functions with the same name but with different signature. Also,
the namespace is another language feature to distinguish different objects with the
same name.

In C++ the mangled name [9, 10] is used to distinguish between different sym-
bols of the same name. The mangled name is constructed using (possibly multiple)
namespace and class information by concatenation, but its exact form is compiler-
dependent. Compilers use mangled names to enable operator overloading [11], i.e.
they generate different mangled names for functions with the same name but dif-
ferent parameter lists. Linkers use these mangled names to resolve symbols [12].

In the case of the C language, there is no such thing as namespace, class, or
function overloading [13]. Still, in certain cases, such as specific optimisations on

274 R. Szalay, Z. Porkoldb, D. Krupp

how a method is called, name decoration occurs [14]. In this paper we will refer to
the name visible to the linker as mangled name, both in the context of C and C++
for the sake of simplicity. While mangled names must be unique for all translation
units linked into a single executable, this does not stand for large-scale projects
where multiple executables are typical.

3. Ambiguity of mangled names

In a software comprehension activity the most frequent questions users ask are
“Where is this method called, or type referenced?”” and “What does the declaration
or definition of this looks like?” [15]. A software comprehension tool should be
able to answer these questions as precisely as possible, as accuracy ensures more
optimised usage of the developers’ time spent working. Both questions lead to the
fundamental problem of correctly resolving references to the definition and usages
of a type, a function, or variable, and other language components.

According to the One Definition Rule (ODR) of C++ [16], only one definition
of any variable, function, class type, enumeration type, or template is allowed
in any one translation unit. When resolving references to ordinary C functions,
static and non-virtual C++ member functions, type names or non-polymorphic
variables, the unique definition within a single translation unit can be found based
on static information. Specifically, the function definition of non-virtual functions
or ordinary C functions can be looked up based on function signature, which —
according to [17] — contains the name of the function, the enclosing namespace,
class of which the function is member of (in the context of C++), the type of the
parameters, template parameter list (in case of function templates in C++), cv-
and ref-qualifiers, unique type names (qualified with namespace) and scope-correct
variable names.

There can be, however, more than one definition belonging to the same unique-
name or signature, but defined in different translation units that are not linked
together. This is a typical scenario in large-scale programs consisting of multi-
ple separate executables and build configurations, e.g. every executable having a
main () function as entry point. Since the translation unit containing the reference
and the set of translation units linked together is known for the linker, it is possible
for the linker to look up the correct, unique definition for any given reference.

In contrast, for a software development or comprehension tool, while the user
is browsing a source file, the linkage context (the set of translation units linked to-
gether) where the definitions should be resolved is usually unknown [18]. This leads
to ambiguous type, function or variable references. In some cases this ambiguity
can be resolved automatically, by taking into consideration the linkage information.
Current development frameworks and grokking tools, unfortunately, are far from
perfect when resolving symbols. In the following, we overview how some of the
most important tools perform when we execute a jump to definition query.

One of the most advance C/C++ development tool, Microsoft Visual Studio [1]
shows a disambiguation page when encountering ambigous mangled names. If the

Symbol Clustering: Resolving ambiguous symbol references . . . 275

entire solution is configured for a certain dependency and the user changes the
internal settings of the solution, Visual Studio decides which symbol a “jump to
definition” query jumps to. This fine-tuning on the users’ end seemingly does
not affect “get calls” /“get usage™like queries, which still show results with every
possible option present, including those which are clearly not valid in the solution’s
current state.

Another advanced development framework, JetBrains CLion [2] analyses and
builds symbol information when a project is configured, and one project having
multiple separately configured executable targets misleads the IDE. A certain file is
designated as location where function f () is defined — our understanding currently
reveals that the file which has a larger name in lexicographical order. The ambiguity
is present even when a certain executable is being debugged by the IDE with “Step
Into” showing the proper implementation being executed while “Jump to Definition”
opening an entirely distinct source file.

The open source NetBeans [3] development tool does not show a disambiguation
page at all, seemingly jumping to a file first detected for a certain symbol after the
last build — this can be overridden by manually setting certain files to “Exclude
from Build” after which the file’s symbols won’t contribute to the set of potential
results. The file to which NetBeans jumps for a definition varies between client
restarts, seemingly in a non-deterministic fashion; the only exception is when the
symbol is defined in the same file where it is used: in this case all queries jump to
this location in particular.

The well-known FEclipse [4] tool written in Java properly prioritises symbols
explicitly defined in the same source file, but if the definition is not found in the
file where a query is issued a disambiguation page is shown. Putting different builds
into entirely different projects with their own Makefile solves this issue, but search
queries does not traverse project boundaries.

The code comprehension tool Wobog [5] shows the locations where a symbol is
defined when viewing information about a particular symbol, but the problem of
Section 3 is present. Jumping to definition by clicking on a usage location jumps
the user to the definition that has been first (in the order of build commands)
discovered by the codebrowser_generator tool of Wobog. It binds usages and
definitions in the same source file together, but further “clustering” capabilities are
not present.

4. Clusters

As we discussed in Section 2 the One Definition Rule in C+-+ ensures, that every
succesfully built executable contains only one instance of a symbol. Thus we can
form clusters of symbols starting from the final executables.

Symbols are propagated from one file to another via subsequent build actions,
forming a chain. The intermediate files in this chain do not carry extra information
in terms of symbol availability: if a.o and b.o is linked into a.out, the target will
contain the symbols from every source. Thus these intermediate files can be omitted

276 R. Szalay, Z. Porkoldb, D. Krupp

without the loss of generality. The solution to the problem described in this paper
requires the consideration of ultimate clusters, a set of clusters into which symbols
are propagated, and from where they are not propagated any further — the leaf
nodes of the graph formed from the aforementioned build relations.

Assuming that we know the build actions that were used in the compilation of a
given project, we can calculate the ultimate clusters for each build action by using
the following algorithm. This algorithm takes a single build action B’ — usually a
compile command of a translation unit/source file — and it calculates a set of build
actions that represent the ultimate clusters for the symbols found in the input build
action’s sources.

Consider a set of symbols which has been appropriately pre-filtered by a “good-
enough” filtering method, e.g. based on mangled names described in Section 3.
For each of these symbols, we calculate the clusters in which a symbol is found,
and if two symbols have at least one common cluster, i.e. they appeared in the
same binary at least once, the relation between them is considered a strong match.
A strong match definitely indicates that the compiler — in accordance with the
language rules — did emplace a relation between the two symbols, e.g. a function
call was linked to use the definition which was found in the same cluster.

On the contrary, if the two symbols never appear in a common cluster, the
relation is considered a weak match. A weak match indicates that no discovered
relationships enforce strength to the match, but the symbols could still be related
to each other. A weak match could, e.g., indicate a function which is called from
a dynamically loaded library.

We also define a third category called indefinite match for matches that are
indefinite in their strength — no extra information could have been retrieved from
calculating the clusters or the clusters do not exist at all. This could happen
from the fact that certain translation units were not compiled or we have no build
information (see Section 2) available. Certain matches will deliberately fall into the
latter category due to optimisation reasons. The fact that a match does not have
any strength indication proves not to hinder search efficiency and accuracy any
further if a query is unambiguous based on previously available properties, such as
mangled name equivalence.

5. Conclusion

In this paper we investigated the problems related to mangled name usage for
symbol resolution. While most of the available development environments and
comprehension tools utilize mangled names, in large industrial C/C++ projects,
where the build process may create multiple binary outputs (libraries or executa-
bles) they do not uniquely identifies the object in question. This may lead imprecise
or even faulty behaviour in case of development frameworks, code comprehension,
or static analysis tools. We measured the relevance of the problem and found that
in typical open source projects 0.5 — 10 percent of ambigous mangled names are
not uncommon.

Symbol Clustering: Resolving ambiguous symbol references . . . 277

As ambiguity resolution should reason whether symbols in separate translation
units with the same mangled name are identical or different, to solve the problem
we have to utilize the essential information of the build process. We developed
an algorithm and implemented an industrial prototype to demonstrate the correct
symbol resolution. Using the Language Server Protocol our solution can be used
by third party development tools to improve their precision in actions, like “go to
definition” or “list all references” type queries.

References

[1] Microsoft Visual Studio, version 14.0.24720.00-Updatel
https://www.visualstudio.com/, 08/15/2016.

[2] CLion: a cross-platform IDE for C and C++, version 2016.2.1
https://www.jetbrains.com/clion/, 08/15/2016.

[3] The Netbeans IDE, version 8.1
https://netbeans.org/, 08/15/2016.

[4] The Eclipse project, Eclipse CDT (C+-+ Development Tools), version Neon 4.6.0
http://wuw.eclipse.org/home/, 08/15/2016.

[5] Woboq code browser, version 2.0.1
https://woboq. com/codebrowser.html, 08/15/2016.

[6] OpenGrok home page, version 0.13-rc2
https://opengrok.github.io/0OpenGrok, 08/15/2016.

[7] The CodeCompass project,
https://github.com/Ericsson/CodeCompass, 08/15/2016.

[8] JSON compilation database format specification,
http://clang.1llvm.org/docs/JSONCompilationDatabase.html, 08/15/2016.

[9] Bjarne Stroustrup: The C++ Programming Language, 4th ed.
Addison-Wesley, ISBN 978-0321563842, 2013.

[10] Margaret A. Ellis and Bjarne Stroustrup: The Annotated C++ Reference Manual.

Section 7.2.1c. ISBN 0-201-51459-1, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA. 1990.

[11] Bjarne Stroustrup: Design and Evolution of C++, Addison-Wesley, ISBN 0-201-
54330-3, 1994.

[12] The C++14 Standard, ISO International Standard, ISO/IEC 14882:2014 — Program-
ming Language C++, §1.3 “Terms and definitions”, 2014.

[13] The C11 Standard, ISO International Standard, ISO/IEC 9899:2011 — Programming
Language C, 2011.

[14] Format of a C decorated name,
https://msdn.microsoft.com/en-us/library/x7kb4e2f .aspx, 08/15/2016.

[15] Jonathan Sillito, Gail C. Murphy, Kris De Volder: Asking and Answering Questions

during a Programming Change Task, IEEE Transactions on Software Engineering,
VOL. 34, NO. 4, July/August 2008.

278 R. Szalay, Z. Porkoldb, D. Krupp

[16] The C++14 Standard, ISO International Standard, ISO/IEC 14882:2014 — Program-
ming Language C++, §3.2 “One Definition Rule”, 08/17/2016.

[17] The C++14 Standard, ISO International Standard, ISO/IEC 14882:2014 — Program-
ming Language C++, §3.4 “Name lookup”, 08/17/2016.

[18] Rudolf, Ferenc, Arpad Beszédes, Mikko Tarkiainen, and Tibor Gyiméthy: Columbus
Reverse Engineering Tool and Schema for C++, In Proc. 18th Int’l Conf. Software
Maintenance (ICSM 2002), pp. 172-181., Oct. 2002.

[19] Clang: a C language family frontend for LLVM,
http://clang.1llvm.org, 08/15/2016.

[20] Ferraro-Esparza, Victor, Michael Gudmandsen, and Kristofer Olsson: Ericsson Tele-
com Server Platform 4, Ericsson Review 3 (2002) pp. 104-113., accessed 08/15/2016.

[21] Apache Xerces C++, part of Apache Xerces Project, git version 26£8004
http://xerces.apache.org, 08/15/2016.

[22] LLVM/Linux: GNU/Linux kernel compatible for LLVM/Clang builds, git version
230b22d
http://11lvm.linuxfoundation.org, 08/15/2016

