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Abstract

At the millennium, Pawlak introduced the flow graphs in rough set theory,
a graphical framework for reasoning about data. This methodological step
extended his theory. Pawlak pointed out that between some flow graph theory
concepts such as strength, certainty, coverage factors and some theorems of
probability theory, namely, total probability theorem and Bayes’ theorem
have formal relationships. This paper shows that all these flow graph concepts
also can formally be associated with statistical concepts, the contingency
tables as well.
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1. Introduction

One of the goals of Pawlak’s rough set theory [10][11] is to manage the concept
of uncertainty. Its basic concept has been extended in several directions since its
origin. Great progress has been made in both theoretical and practical directions.
Further examination of decision-making rules led Pawlak to introduce flow graphs
in rough set theory (rough set flow graphs, in short, or simply flow graphs) [12][13].
Since then, rough set flow graphs have been further improved. For instance, Pat-
taraintakorn examined the concept of entropy in flow graph [9]; Chitcharoen and
Pattaraintakorn introduces a matrix form of flow graphs [3][4]. The purpose of
this article is to show the connection between rough set flow graphs and statistical
contingency tables.

The paper is organized as follows. Section 2 briefly summarizes some statistical
terms about contingency tables, whereas Section 3 defines the basic theory of rough
set flow graphs. Section 4 basically creates a new modified definition. The example
in this section gives a detailed insight into the relations between the two theoretical
parts. Further research directions will be outlined in the Summary.
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2. Contingency tables

The most basic method of statistical analysis of discrete variables (measured on
nominal or ordinal scales) is the analysis of frequencies, relative frequencies and
percentage distributions. The results are usually displayed in tables and graphs.
Joint distribution of two or more variables can be represented in contingency tables.
However, contingency tables of three or even more variables may be too complex
— so, their using is not common. This paper also deals with contingency tables
containing two variables.

Let X and Y be two discrete random variables. The possible values of X and
Y are the events A1, . . . , An and the events B1, . . . , Bm, respectively. Consider an
experiment toX and Y . If the events Ai and Bj occur at the same time, we say that
the event AiBj occurs. Let the experiment carry out N times, and the occurrence
frequency of AiBj denote by fij . Arranging the values fij in a table form is called
a contingency table (Figure 1). In this table, the dotted indices indicate row and
column sums, i.e., fi. =

∑m
k=1 fik, f.j =

∑n
k=1 fkj , and

∑n
i=1 fi. =

∑m
j=1 f.j = N .

Figure 1: Common notations in contingency tables

Three basic rates may be identified in a contingency table:
(a) the percentages of the row sums: fij/fi.;
(b) the percentages of the column sums: fij/f.j ;
(c) the percentage of the total sum: fij/N .

3. Rough set flow graphs – basic notions and nota-
tions

This section discusses the basic concepts of Pawlak’s original rough set flow graphs.
It follows the terminology and notations of Pawlak [14].

Definition 3.1. A flow graph is a directed, acyclic, finite graph G = (N,B, ϕ). N
is a set of nodes. B ⊆ N ×N is a set of directed branches. ϕ : B → R>0 is a flow
function (R>0 is the set of positive real numbers). ϕ(x, y) models a throughflow
from x to y (x, y ∈ N ; (x, y) ∈ B).
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A node may have input and/or output nodes. For x ∈ N , the sets of nodes
I(x) = {y ∈ N : (y, x) ∈ B} and O(x) = {y ∈ N : (x, y) ∈ B} are the input and
the output of the node x ∈ N , respectively.

Inputs and outputs of nodes can be aggregated to the whole graph. The sets
I(G) = {x ∈ N : I(x) = ∅} and O(G) = {x ∈ N : O(x) = ∅} are the input and the
output of the flow graph G. The union of input and output nodes of G is referred
to as the external nodes of G, and N \ (I(G) ∪O(G)) is the internal nodes of G.

The concepts inflow and outflow can also be defined for a node and the whole
graph as well. Inflow of a node x ∈ N is a function that summarizes the flow values
for the input nodes of x: ϕ+(x) =

∑
y∈I(x) ϕ(y, x). Outflow of a node x ∈ N is

a function that summarizes the flow values for the output nodes of x: ϕ−(x) =∑
y∈O(x) ϕ(x, y). Inflow of the whole graph G is a function that summarizes the

flow values for the input nodes of graph G: ϕ+(G) =
∑

x∈I(G) ϕ−(x). Outflow of
the whole graph G is a function that summarizes the flow values for the output
nodes of graph G: ϕ−(G) =

∑
x∈O(G) ϕ+(x).

In the rough set flow graphs, it is assumed that for each internal node x the
following equation holds: ϕ+(x) = ϕ−(x) = ϕ(x). ϕ(x) is called the throughflow
of a node x. Similarly, for the whole graph G, we have ϕ+(G) = ϕ−(G) = ϕ(G).
ϕ(G) is the throughflow of the graph G. Reasonably, these equations are called flow
conservation equations.

Definition 3.2. A normalized flow graph is such a directed, acyclic, finite graph
G = (N,B, σ), where N is a set of nodes, B ⊆ N ×N is a set of directed branches,
and σ is a normalized flow function which is defined as follows:

σ : B → [0, 1], σ(x, y) 7→ ϕ(x, y)

ϕ(G)
.

The value σ(x, y) is called the strength of the directed branch (x, y) ∈ B.

Clearly, 0 ≤ σ(x, y) ≤ 1.
In normalized flow graphs, normalized inflow and outflow functions can also be

defined. Normalized inflow and outflow of a node x ∈ N are:

σ+(x) =
∑

y∈I(x)
σ(y, x); σ−(x) =

∑

y∈O(x)

σ(x, y).

Normalized inflow and outflow of the whole normalized flow graph are:

σ+(G) =
∑

x∈I(G)

σ−(x); σ−(G) =
∑

x∈O(G)

σ+(x).

Normalized flow conservation equations are also required in normalized flow
graphs. For any internal node x, σ+(x) = σ−(x) = σ(x) holds. σ(x) is the normal-
ized throughflow of the node x. For the whole graph G, σ+(G) = σ−(G) = σ(G)
holds, where σ(G) = 1.

The following two notions will be fundamental in the following.
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Definition 3.3. Let G = (N,B, σ) be a normalized graph. For any directed branch

(x, y) ∈ B, cer(x, y) =
σ(x, y)

σ(x)
and cov(x, y) =

σ(x, y)

σ(y)
are called the certainty

factor and the coverage factor of (x, y), respectively.

4. Connection of flow graphs and contingency tables

Relying on the certainty and coverage factors, Pawlak pointed out in [14] that

“[. . . ] the information flow in a flow graph is governed by Bayes’ for-
mula; however, the formula can be interpreted in an entirely determin-
istic way without referring to its probabilistic character.” ([14], p. 35)

Reviewing many examples of research papers, e.g., [1, 2, 5, 7, 8, 15], one might
notice the following two observations:

(a) The nodes locating in a column are never connected in the flow graphs pictures.
In such a column, a possible value of an attribute is assigned to each node.

(b) The nodes in a column always connect to the nodes of only one other column.

In graph theory, a graph of such type is called the multipartite or k-partite
graph. Let k ≥ 2 be an integer. A graph G = (N,B) is called k-partite, if the
nodes can be partitioned into k disjoint sets in such a way that every node has
its ends in different equivalent classes. In Pawlak’s flow graph context, another
additional constraint is added to this definition. Namely, every node from a class
has to end in the same other class.

Definition 4.1. The modified Pawlak’s flow graph is a k-partite, directed, acyclic,
finite graph G = (N, k,B, ϕ). N = T1 ∪ T2 ∪ · · · ∪ Tk is a set of nodes, where
T1, T2, . . . , Tk are disjoint node sets, and k ≥ 2 is an integer. B ⊆ N ×N is a set
of directed branches with the following restrictions: (a) For any i ≤ k, if x, y ∈ Ti,
(x, y) /∈ B. (b) For any i ≤ k, there is the only i 6= j ≤ k in such a way that
(x, y) ∈ B for all x ∈ Ti and some nodes y ∈ Tj . Such Ti, Tj pairs are called related.
ϕ : B → R>0 is the flow function.

Similar modifications can also be made for normalized flow graphs.

The above definition gives an opportunity to draw a parallel between the con-
cepts of flow graphs and contingency tables.

Let Tp, Tq (p, q ≤ k ∈ N, p 6= q) be two related disjoint sets of nodes in
the modified flow graph G. It is assumed that Tp = {vp1 , . . . , vpn} ⊂ N and Tq =
{vq1, . . . , vqm} ⊂ N . Let assign an event Ai ∈ X to the node vpi ∈ Tp (i = 1, 2 . . . , n),
and an event Bj ∈ Y to the node vqj ∈ Tq (j = 1, 2, . . . ,m). Then it may be drawn
a parallel between the throughflow ϕ(vpi , v

q
j ) from vpi to vqj and the occurrence fre-

quency fij of AiBj . Between other elements of the the two theories may be drawn
a parallel in the same way. These are summarized in Table 1, and the Example 4.2
gives an illustrative example.
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Contingency Table Flow Graph G
fij , fi., f.j ϕ(vpi , v

q
j ), ϕ(v

p
i ), ϕ(v

q
j )

fij
N

,
fi.
N

,
f.j
N

σ(vpi , v
q
j ) =

ϕ(vpi , v
q
j )

ϕ(G)
, σ(vpi ) =

ϕ(vpi )

ϕ(G)
, σ(vqj ) =

ϕ(vqj )

ϕ(G)
fij
fi.

,
fij
f.j

cer(vpi , v
q
j ) =

σ(vpi , v
q
j )

σ(vpi )
, cov(vpi , v

q
j ) =

σ(vpi , v
q
j )

σ(vqj )

Table 1: Parallel notions of contingency tables and flow graphs.
G = (N, k,B, ϕ); vpi ∈ Tp, v

q
j ∈ Tq; (vpi , v

q
j ) ∈ B;

Tp, Tq ⊂ N (Tp ∩ Tq = ∅)

Figure 2: Flow graph [14] and the proper contingency tables

Example 4.2. Pawlak’s article [14] illustrates the basic concepts of the flow graph
theory by an example of a group of 1000 patients. They are examined according
to presence of the disease (T1 = {yes, no}), age (T2 = {old,middle, young}) and
test results (T3 = {+,−}) – these are the nodes in the flow graph. The grouped
nodes are shown in Figure 2. ϕ(x1) indicates that 600 people are affected by the
disease and ϕ(x2) = 400 are not. This can be seen in the sum of the first and
second rows in the corresponding contingency table - these are the occurrence fre-
quency of events A1 and A2. The distribution of age and test results are given by
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Figure 3: Normalized flow graph [14] and contingency tables with
relative frequencies

the ϕ(y1), ϕ(y2), ϕ(y3) and ϕ(z1), ϕ(z2) - which values also appear in the contin-
gency tables, occurrence frequency of events B1, B2, B3 and C1, C2. The ϕ(x, y)
througflow values appear in the contingency table cells. Figure 3 presents the
normalized flow graph, the associated σ values and the relative frequencies. The
corresponding value pairs differ only by rounding. The certaninty (cer(x, y)) and
coverage (cov(x, y)) factors are shown in Figure 4. The flow graph factors can also
be matched with the corresponding cell values in the tables in these cases as well.

5. Summary

One of the main research goal of the rough set theory is the mathematical mod-
elling human decision process. Flow graph theory represents a new chapter in
these studying. Examples in many research publications support the possibility of
modifying the definition flow graph. This modified flow graph definition allows to
examine the similarity between flow graph theory and contingency tables.
Further studies are possible in the following research directions:

• It is necessary to examine the total effect of the modified definition on the
theory (Flow Graph- and Roug Set Theory);

300 P. Takács, Z. E. Csajbók



Figure 4: Certainty and coverage factors [14] and the corresponding
contingency tables with relative frequencies (concerning row sums

and column sums)

• It can be studied the effects of swapping variables.

• Pawlak has introduced η dependency (correlation) factor between nodes.
There are many types of dependency indicators for contingency tables as
well. The relationship of dependency factors in the two research sectors can
be studied.

These questions and the further results make it possible to approach the classical
statistical concepts and methods from a different perspective and give new ideas
to the Pawlak’s flow graph research.
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