
Efficiency test of Microsoft SQL Server 2016

Tamás Balla, Tibor Radványi, Sándor Király, Roland Király

Eszterházy Károly University
balla.tamas@uni-eszterhazy.com, radvanyi69@gmail.com

kiraly.sandor@uni-eszterhazy.hu, kiraly.roland@uni-eszterhazy.hu

Abstract

Databases play more and more important role in the information soci-
ety.In every part of life, for example industry, government or education, it is
extremely important that data can be stored as efficiently as possible, and
queries run as fast as possible.

In this article, we summarize the results of the efficiency test performed
on the Microsoft SQL Server 2016 database management system for the field
of queries. We examine in what way and what large the efficiency methods
increase the efficiency of queries. In this paper, we discuss how the various
proposed techniques and methods influence the efficiencyin the terms of exe-
cution time, CPU and memory, and how the efficiency indicators change due
to the increasing number of records.

We shed light on the efficiency issues of SQL queries: what large efficiency
gains the variety of query optimization techniques cause depending on the
stored data type and the number of records.

Keywords: database efficiency, SQL, query optimization techniques

MSC: 68P10, 68P20

1. Intorduction

The role of databases gradually gain importance in the information society since the
data created swiftly and in big volumes are to be stored in such a way that can be
later accessed. Nowadays, databases and client software based and run on them are
applied in walks of life. One shall consider for instance the public administration,
banking, healthcare, industry, and education. They share one thing for sure: they
use databases and database systems with high volumes of records. The primary
aim is that these databases shall be effective.

The effective database may have multiple meanings. It can be fast from the
perspective how fast it executes the SQL commands; however, at the same time,

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 31–39

doi: 10.14794/ICAI.10.2017.31

31

one shall remember that this is not the only point of view. Just consider stor-
age spaces and processor time that can be the measuring tool for the efficacy of
background processes. Regardless which database managing system is concerned,
special attention shall be paid on it [1]. Kevin Kline et al. made the following
assumption: “According to our experience (and many professionals agree with us),
the 80% of the performance increase regarding the SQL servers is due to the patches
on SQL source codes and not to the smart change of settings or the adjustment of
the operation system.”

Our aim is to investigate the efficacy of SQL commands prepared by applying
different methods, techniques and approaches, and how they affect efficacy. It is not
only measured from the perspective of quick response time but also the measuring
on storage space and processor time will be attached.

2. Executing SQL commands

The SQL commands are translated by the query translator, hence the database
engine may run them. Prior to translation, a syntactic analysis is required that
checks whether the commands are elaborated in accordance with the rules of the
language. If this analysis is over, the process of query translation is initiated.

The activity of query translator may be broken down into three major steps:

1. analysis,

2. rewriting of query,

3. elaboration of physical plan.

Query transcript and elaboration of physical plan are called query optimization.
During the analysis, the query translator creates an analysis tree that is in accor-
dance with the structure of the command. The transcript of query is carried out
subsequent to successful analysis. In this step, the translator prepares an initial
query plan from the analysis tree that is later transformed, if necessary, that the
execution time is decreased and the results of the query remain the same. During
the preparation of a physical plan, the logic query plan is converted to physical
query plan by the translator [2, 3].

3. Sample database

To measure the efficacy of a SQL server, a database shall be established on which
the query based on different techniques, approaches and methods may be mea-
sured. The sample database will be applied to prove or contradict in practice the
theoretical efficacy boosting techniques based on the operation of the server.

Since we aim at measuring the efficacy of the database in multiple situations,
we strived for

32 T. Balla, T. Radványi, S. Király, R. Király

• establishing a database that is abundant in both data types and record types;

• that tables making up the database have one-more and more-more connec-
tions strings.

The elaborated database model includes the phone and internet records, clients,
subscriptions, charges, data traffic and tariffs of a telecommunications company.
The database model is displayed in Figure 1.

Figure 1: Sample database

4. Examinations

The main target of the examinations is to decide how the efficacy of queries may
be increased by using the logical thinking during the elaboration of the queries
and the techniques provided by the server. Our aim is not only setting up theories
about the efficacy increase, but also testing it in practice.

Efficiency test of Microsoft SQL Server 2016 33

As for the first step, we shall examine the queries during which we want the
query the entire data content of certain tables. When querying all the fields of a
table, one shall either list the fields of the table after SELECT or hit ∗ after the
keyword. Let us examine if there is a difference between the methods regarding
efficacy. Let us see the two queries to be tested.

SELECT traffic .∗ , services .∗ , clients .∗
FROM traffic

INNER JOIN services
ON traffic . service_id = services . id

INNER JOIN subscriptions
ON subscriptions . id = traffic . subscription_id

INNER JOIN clients
ON clients . id = subscriptions . client_id

Query 1: SELECT *

SELECT traffic . id , traffic . subscription_id , traffic . service_id , traffic .
traffic_start , traffic . traffic_end , traffic . traffic_length , services .
id , services . name , services . description , services . active , services .
price , clients . id , , clients . name , clients . birth_place_id , clients .
birth_date , clients . city_id , clients . address

FROM traffic
INNER JOIN services

ON traffic . service_id = services . id
INNER JOIN subscriptions

ON subscriptions . id = traffic . subscription_id
INNER JOIN clients

ON clients . id = subscriptions . client_id

Query 2: SELECT field list

Subsequent to viewing the queries, let us examine that the series of queries on
the sample database, namely, which method is more adequate for establishing an
efficient system.

Records CPU time (ms) Execution time (ms)
Query 1 Query 2 Query 1 Query 2

100 000 789.3 745.7 2 174.9 2 107.1
200 000 1 570.9 1 544.3 5 204.7 4 404.6
300 000 2 400.9 2 226.2 6 310.0 6 678.8
400 000 2 292.1 3 132.5 9 001.6 9 021.2
500 000 4 865.7 4 867.3 11 464.6 11 283.9

Table 1: CPU and exection time of SELECT * vs. SELECT field
list (ms)

According to the table based on the examination, although there are certain
minor efficacy differences between the two methods, no major dissimilarity is ob-
served. This is rather strange as many works suggest refraining from applying the
∗ option as the using of keyword deteriorates efficacy. Based on the examination,
it causes no problems in SQL Server 2016.

34 T. Balla, T. Radványi, S. Király, R. Király

In the second examination, we investigate the effect of unnecessary use of DIS-
TINCT keyword on efficacy. Only the individual hits are displayed among set of
records at the output of the query. The decrease of efficacy is inevitable as the
records shall be submitted to further examination. Let us prepare a query that
queries all the traffic launched by the clients of the telecommunication company.

SELECT DISTINCT traffic . traffic_start , traffic . traffic_end , DATEDIFF (
SECOND , traffic . traffic_start , traffic . traffic_end) , services . name ,
services . price , clients . name , cities . name , clients_birth_date , lp .
name , clients . address

FROM traffic
INNER JOIN services ON traffic . service_id = services . id
INNER JOIN subscriptions ON subscriptions . id = traffic .

subscription_id
INNER JOIN clients ON clients . id = subscriptions . client_id
INNER JOIN cities lp ON lp . id = clients . city_id
INNER JOIN cities ON cities . id = clients . birth_place_id

Query 3: SELECT with DISTINCT

SELECT DISTINCT traffic . traffic_start , traffic . traffic_end , DATEDIFF (
SECOND , traffic . traffic_start , traffic . traffic_end) , services . name ,
services . price , clients . name , cities . name , clients_birth_date , lp .
name , clients . address

FROM traffic
INNER JOIN services ON traffic . service_id = services . id
INNER JOIN subscriptions ON subscriptions . id = traffic .

subscription_id
INNER JOIN clients ON clients . id = subscriptions . client_id
INNER JOIN cities lp ON lp . id = clients . city_id
INNER JOIN cities ON cities . id = clients . birth_place_id

Query 4: SELECT without DISTINCT

In such case, the data of the client, traffic and subscription are shown. It is trivial
that none of the elements of the sets of result at the output of the query may
identical, since only one traffic may be generated at one subscription at one time.

Records CPU time (ms) Execution time (ms)
Query 3 Query 4 Query 3 Query 4

100 000 1 499.1 1 205.9 6 205.9 1 912.3
200 000 2 981.2 2 597.5 15 493.6 4 081.2
300 000 4 243.2 3 761.2 22 307.1 6 168.6
400 000 5 836.0 5 026.4 30 333.5 8 421.1
500 000 8 243.1 6 923.3 48 108.1 10 377.8

Table 2: CPU and exection time of SELECT DISTINCT vs. SE-
LECT (ms)

In accordance with the experience gained (in Table 2.), it suggested to consider
the use the DISTINCT keyword as the keyword significantly deteriorates efficacy.
Initially, the running speed is double, but it triples in parallel with the increase of
record numbers.

Efficiency test of Microsoft SQL Server 2016 35

In the next examination, we observed the consequences of WHERE filter crite-
ria. Upon the relative familiarity of the operation and values of records stored in
particular tables, an SQL query may be altered, hence the number of records to be
examined by the server is minimal. In such cases, the sequence of filter criteria is
modified and the providing of trivial values is omitted. Let us observe the following
query:
SELECT clients . name , tariff_packages . name , services . name , traffic .

traffic_start , traffic . traffic_end , DATEDIFF (SECOND , traffic .
traffic_start , traffic . traffic_end) as ' length '

FROM traffic
INNER JOIN subscriptions ON traffic . subscription_id = subscriptions . id
INNER JOIN tariff_packages ON tariff_packages . id = subscriptions .

tariff_package_id
INNER JOIN services ON services . id = traffic . service_id
INNER JOIN clients ON clients . id = subscriptions . client_id
INNER JOIN cities ON cities . id = clients . city_id
WHERE ' 2004 -01 -01 00:00:00 '<= traffic . traffic_start AND traffic .

traffic_start <= ' 2004 -12 -31 23:59:59 ' AND ' 2004 -01 -01 00:00:00 ' <=
traffic . traffic_end ND traffic . traffic_end <= ' 2004 -12 -31 23:59:59 '
AND traffic_length < 3600 AND services . name = ' call ' AND cities . name =
' Kismaros ' AND clients . name = ' Kiss Kelemen '

Query 5: Not optimal query (AND operator)

Why the query is not efficient? Because not the most selective criterion is at first
place of the WHERE criterion of the query, hence the evaluation of records is
slower. Let us consider for a moment how many clients use a particular service
at a telecommunication company annually and how many clients it has under the
name of Kelemen Kiss who resides at Kismaros. An optimally designed query is as
follows:
SELECT clients . name , tariff_packages . name , services . name , traffic .

traffic_start , traffic . traffic_end , DATEDIFF (SECOND , traffic .
traffic_start , traffic . traffic_end) as ' length '

FROM traffic
INNER JOIN subscriptions ON traffic . subscription_id = subscriptions . id
INNER JOIN tariff_packages ON tariff_packages . id = subscriptions .

tariff_package_id
INNER JOIN services ON services . id = traffic . service_id
INNER JOIN clients ON clients . id = subscriptions . client_id
INNER JOIN cities ON cities . id = clients . city_id
WHERE

clients . name = ' Kiss Kelemen ' AND
cities . name = ' Kismaros ' AND
services . name = ' call ' AND
' 2004 -01 -01 00:00:00 '<= traffic . traffic_start AND traffic .

traffic_start <= ' 2004 -12 -31 23:59:59 ' AND ' 2004 -01 -01
00:00:00 ' <= traffic . traffic_end ND traffic . traffic_end <= '
2004 -12 -31 23:59:59 ' AND traffic_length < 3600

Query 6: Optimal query (AND operator)

Based on the described two queries, we shall take the results of the test measuring
into consideration. The execution of queries is rather fast, however their execution
time differs. The execution of the logically built queries is far faster. The particular
criteria may be joined by AND operators in a criterion system. Moreover, the
operation of the operator is known. That is to say, in case of phrases joined by
AND operators, the most selective phrase shall be at the first place.

36 T. Balla, T. Radványi, S. Király, R. Király

Records CPU time (ms) Execution time (ms)
Query 5 Query 6 Query 5 Query 6

100 000 11.0 6.2 19.3 7.2
200 000 17.2 15.5 23.3 18.4
300 000 26.6 21.6 34.9 26.7
400 000 45.2 25.0 50.3 30.0
500 000 48.1 37.4 52.2 38.6

Table 3: CPU and exection time of not optimal and optimal queries
(AND operator) (ms)

Now we shall consider the result of running the queries in Table 3. It is clear
that significant increase in efficacy was gained by the optimization of the WHERE
criterion. Moreover, we suppose that of the criterion is defined in accordance with
the operation of the joining operators, the efficacy should be improved further.

Another operator for joining criteria is OR operator. In the case of this oper-
ator, the value of set of phrases joined by it is true if the value of any of the set
of phrases is true. The building strategy is the opposite that of applied regarding
AND operator: the phrase or criterion shall be at the first place that is met by the
most record of the queried table. Upon creating a simple query, a criterion or a
criterion system may be specified at WHERE clause that shall be met the elements
of set of records created at the output of query, so they will be included in the set
of records of the query. It is suggested to use as simple and as few criteria as
possible, hence the query will be the most effective. Furthermore, criteria should
be contracted in a way the criterion system remains logically equivalent. More-
over, trivial criterion shall be avoided as unnecessary evaluation deteriorates the
efficacy. The unambiguous criteria shall be eliminated in the code of the query.Let
us create a query that defines the traffic volume of 2010 of the telecommunications
company. During the query, only traffic shorter than one hour shall be taken into
consideration. But first let us take a query with a true output but it is not very
effective as it comprises unnecessary criteria.

SSELECT clients . name , tariff_packages . name , services . name , traffic .
traffic_start , traffic . traffic_end , DATEDIFF (SECOND , traffic .
traffic_start , traffic . traffic_end) as ' length '

FROM traffic
INNER JOIN subscriptions ON traffic . subscription_id = subscriptions . id
INNER JOIN tariff_packages ON tariff_packages . id = subscriptions .

tariff_package_id
INNER JOIN services ON services . id = traffic . service_id
INNER JOIN clients ON clients . id = subscriptions . client_id INNER JOIN

cities ON cities . id = clients . city_id
WHERE 0 < traffic . length AND ' 2004 -01 -01 00:00:00 ' <= traffic .

traffic_start AND traffic . traffic_start <= ' 2004 -12 -31 23:59:59 ' AND '
2004 -01 -01 00:00:00 ' <= traffic . traffic_end ND traffic . traffic_end <=
' 2004 -12 -31 23:59:59 ' AND traffic_length < 3600

Query 7: Not optimal query (unnecessary conditions)

It is clear that set of records at the output of the query meet the above specified

Efficiency test of Microsoft SQL Server 2016 37

conditions, however, it may be simplified, therefore made more effective. Let us
take a simplified query in which the first three criteria are omitted, since the length
of traffic will be more than 0. Moreover, it is unnecessary to restrict the end of the
traffic from below and the beginning form above, since the other criteria guarantee
that. Let us view the optimal query.

SSELECT clients . name , tariff_packages . name , services . name , traffic .
traffic_start , traffic . traffic_end , DATEDIFF (SECOND , traffic .
traffic_start , traffic . traffic_end) as ' length '

FROM traffic
INNER JOIN subscriptions ON traffic . subscription_id = subscriptions . id
INNER JOIN tariff_packages ON tariff_packages . id = subscriptions .

tariff_package_id
INNER JOIN services ON services . id = traffic . service_id
INNER JOIN clients ON clients . id = subscriptions . client_id INNER JOIN

cities ON cities . id = clients . city_id
WHERE ' 2004 -01 -01 00:00:00 ' <= traffic . traffic_start AND traffic .

traffic_end <= ' 2004 -12 -31 23:59:59 ' AND traffic_length < 3600

Query 8: Optimal query (only necessary conditions)

After creating the two queries, We shall focus on their efficacy. It is expected
that the efficacy of the query is will be improved. The efficacy examination is
carried out in the ordinary way and the results are included in the following table
and figure.

Records CPU time (ms) Execution time (ms)
Query 7 Query 8 Query 7 Query 8

100 000 104.5 71.8 215.8 183.7
200 000 179.4 165.6 388.2 330.4
300 000 288.6 254.3 504.1 440.8
400 000 368.2 302.6 578.7 549.2
500 000 412.2 399.4 746.8 623.8

Table 4: CPU and exection time of not optimal and optimal queries
(conditions) (ms)

It is clear that, in accordance with the expectations, the efficacy has been
improved upon the simplification of the criterion system. The demonstrated case
was an extreme example as the unnecessary criteria where located at the WHERE
clause, hence they were evaluated in each case. It is not sure, however, the efficacy
would have been improved if such criteria were at the end of the criteria sequence.
It could have occurred that there is no need to evaluate the unnecessary criteria
after the evaluation of criteria due to the evaluation of criteria at the beginning of
the criterion system, hence the efficacy probably would not have been impacted.
It is clear from the figure that the efficacy of optimized query is improved in line
with the increasing record numbers

38 T. Balla, T. Radványi, S. Király, R. Király

5. Conclusion

We have introduced how queries may be transformed and optimized to be the most
effective that possible also the server during the execution of the command. The
examinations have proved the effective management of the database requires not
only the knowledge of SQL language, but also logic thinking and the consideration
of statistical information. It is important think in advance how frequently certain
attribute values appear in the given table. It is experienced that independent form
auxiliary methods implemented on database servers, well structured and elaborated
queries still play an important role.

References

[1] Peter Gulutzan, Trudy Pelzer: SQL Performance Tuning (1st Edition), 2003.,
ISBN: 0201791692

[2] Jefrey D. Ullman, Jenifer Widom: A First Course in Database Systems (3rd
Edition), 2009.

[3] Sándor Gajdos: Databases, Polytechnic University, 2006.

Efficiency test of Microsoft SQL Server 2016 39

