
A comparison of the instruction-oriented
and the problem-type-oriented teaching
methods through the usage of Scratch

programming language

Péter Bernát

ELTE Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
bernatp@inf.elte.hu

Abstract

For teaching programming, two widespread methods in public education
are the instruction-oriented method and the problem-type-oriented method.
Both of the methods are based on solving problems; however, the first one
chooses the problems in order to present the various instructions of the pro-
gramming language, while the second takes the problem types specific to a
given programming language as its basis and chooses the problems, and with
that, the instructions, accordingly.

In my article I will introduce the two methods in theory and in practice.
I have chosen Scratch as the programming language, that I will provide a
short description of. The two methods will be evaluated also from a didactic
point of view. My dual goal with this article is to uncover the dangers of
using the instruction-oriented method, while highlighting the potentials in
applying the problem-type-oriented method.

Keywords: teaching programming, programming methodology, problem-type-
oriented method, instruction-oriented method, Scratch programming lan-
guage

MSC: 97Q60

1. Introduction

In public education the primary goal of teaching programming is to develop algo-
rithmic problem-solving thinking by exposing students to programming problems.
A further goal is to familiarize students with programming methods and notions
necessary for solving such problems. As their tool, teachers use a specific pro-

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 41–52

doi: 10.14794/ICAI.10.2017.41

41



gramming language, which will be introduced only to the extent set by the above
goals.

For teaching programming, two widespread methods in public education are the
instruction-oriented method and the problem-type-oriented method. Both of the
methods are based on solving problems; however, the first one chooses the problems
in order to present the various instructions of the programming language, while
the second takes the problem types specific to a given programming language as its
basis and chooses the problems, and with that, the instructions, accordingly [1].

In my article I will introduce the two methods in theory and in practice, by
presenting, through one example, how each of the methods would approach teaching
a specific set of instructions within the same programming language. I have chosen
Scratch as the programming language, because it is one of the most widely used
languages for teaching beginner programmers. In a separate section, I will provide
a short description of the program as well.

The two methods will be evaluated also from a didactic point of view. Even
though both methods are admittedly popular in public education, only the problem-
type-oriented method can be truly recommended [1]. Therefore, my dual goal with
this article is to uncover the dangers of using the instruction-oriented method, while
highlighting the potentials of applying the problem-type-oriented method.

2. Scratch programming language and the selected
set of instructions

With Scratch we can create multimedia programs applying the object-oriented and
the event-driven paradigms. The objects are sprites which can be moved on the
screen and whose looks can be changed. Their most important properties are their
position, their direction, their size, their visibility, and their current costume. They
are able to communicate with each other by sending messages. Traditional con-
trol structures, such as sequences, count-controlled loops, infinite loops, condition-
controlled loops, and selections, can also be used. Parametered procedures can
be created; primitive variables and lists can be introduced. A special object in
Scratch, next to sprites, is the stage, where sprites are located. In this case, it is
not the looks but the background which can be modified.

My examples will deal with teaching the instructions of event handling and
sprite movement, the instructions of changing looks, one instruction of count-
controlled loops and infinite loops each, and the instructions of sending messages.

3. Introduction of the instruction-oriented method
to teach programming

The aim of the instruction-oriented method is to teach programming through in-
structions. In order to do so, it groups instructions and presents each group through

42 P. Bernát



problems.
Typically, the themes of the method consist of listing instruction groups. To

teach the above mentioned Scratch instructions, for example, this method would
set up the following syllabus:

1. the instructions of event handling and movement;
2. the instructions of changing looks;
3. the instructions of count-controlled loops and infinite loops;
4. the instructions of sending messages.

I will illustrate each section of the syllabus with a problem that I took from
books or online materials which are pronouncedly based on this method and aim
to introduce Scratch to young learners.

3.1. The instructions of event handling and movement
The first couple of problems can be designed to teach the instructions of event
handling and sprite movement. The book Scratch Programming for Teens [2], for
example, introduces the instructions that turn and move sprites forward through a
program which makes the sprite appear for 1 second at each corner of the screen,
once the green flag was pressed to start (figure 1).

Figure 1: The cat which appears at the four corners of the screen
and the program behind it [2]

3.2. The instructions of changing looks
The next problems aim at the instructions that change the looks of the sprites.
The notion of costume and the instruction to set the costume can be introduced
for instance with a program (figure 2) in which a flying cat is controlled by the

A comparison of the instruction-oriented and the problem-type-oriented. . . 43



arrow keys, and, depending on the direction of the turn, the sprite will switch to
one of its two potential costumes (of looking left or looking right) [3].

Figure 2: The cat which moves and switches costumes when the
arrow keys are pressed, and the program behind it [3]

3.3. The instructions of count-controlled and infinite loops

Some further problems can be used to explain the instructions of count-controlled
and infinite loops. For instance, the author of How to Code in 10 Easy Lessons [4]
decided to introduce the instructions of count-controlled loops with some programs
that draw squares. The easiest of these is shown on figure 3, where the sprite is
drawing a fixed sized square.

3.4. The instructions of sending messages

With the help of the last problems, messaging can be presented. In the next
program [5], the sprite will always move in the direction of the girl that we click
on. The chosen girl, Ann or Britney, will send the message “look at Ann” or “look
at Britney”, respectively, to the sprite, which will make him look and move toward
her (figure 4).

4. Evaluation of the instruction-oriented method to
teach programming

Even though the instruction-oriented method introduces each instruction of the
programming language, its application can lead to a number of harmful conse-
quences. On the one hand, it dedicates approximately the same amount of at-

44 P. Bernát



Figure 3: The cat which draws a square and the program behind
it [4]

Figure 4: The boy moving towards the girls and the boy’s scripts [5]

tention and time to each instruction, while their significance and frequency can
vary a lot in reality. On the other hand, it aims to demonstrate the instructions
in problems which are as simple as possible, which means that the problems are
not getting more and more complex in a gradual fashion, nor is there space for
the repetition of the previously learned instructions. Both would be didactically
important, however.

In programming practice we identify the necessary instructions based on what
a problem requires; nevertheless, the instruction-oriented method works the other
way around. It makes up problems for the given instructions. As a consequence, it

A comparison of the instruction-oriented and the problem-type-oriented. . . 45



is not uncommon that the problems are created only for the purpose of presenting
a given instruction, without connecting the problems to a category of an existing
genre (like animation or game in the case of Scratch); thus, the problem may feel
unreal. Such problems (like exemplified by the program in figure 1) are not too
motivational. Similarly, it might happen that the problem makes use of, thus,
introduces the instruction in a non-typical way, which is misleading (in Scratch
count-controlled loops are more often used to move a sprite or replay music than
to draw a square or other symmetric shapes).

Nevertheless, the most severe weakness of the method is that it fails to deal
with problem-solving methods which go beyond the scope of instructions. It is so
because the instruction-oriented method is grounded on the misconception that
to be able to solve more complex problems, all it takes is simply to be aware of
the instructions. The truth is, without equipping students with problem-solving
methods, we can provide little support for their independent creative work.

5. Introduction of the problem-type-oriented
method to teach programming

The problem-type-oriented method approaches problem solving in a fundamentally
different way. First of all, it is prepared to accept that even the simplest problems
may need to be split up into sub-problems, which in the case of more complex prob-
lems is practically inevitable. This operation needs to be repeated on several levels
until we get to sub-problems that can be solved with the instructions directly [6].
To solve recurring sub-problems, the problem-type-oriented method offers design
patterns which are the reusable, general solutions to these sub-problems.

The goal of the problem-type-oriented method is to teach design patterns and
instructions necessary for solving problems that belong to a certain problem group,
and within that to a certain problem type. The different problem types, and within
those the different problems, are ordered so they can gradually introduce students
to design patterns and instructions, while systematically repeating and refreshing
them [1].

While teaching Scratch, or generally beginner programming, animation and
game development are two popular problem groups. The basic instructions, de-
fined at the beginning of the article, can be introduced through animation. In the
following, I will explain my own conception on some of the potential problem types
within animation, along with the design patterns and instructions they require.
The problems I will present are modified versions of programs shared by users of
the official website of Scratch.

Typically, the syllabus that follows the problem-type-oriented method is a list
of problem types, just like below:

1. simple interactive animations;
2. one-scene animations;
3. multiple-scene animations.

46 P. Bernát



5.1. Simple interactive animations

Into this problem type I have categorized animations in which a click of the mouse
or the pressing of a key triggers that the screen or parts of the screen change
appearance or a sound is played.

Figure 5 portrays such an animation (an emoji maker), which allows for chang-
ing the background, the face, the eyes, the mouth or the hat by pressing a key [7].
To make one of many funny combinations possible, the programmer needs only two
things per each image excerpt (which are separate sprites): to assign a key, which
if pressed, activates the instruction and to add the instruction that switches the
costume of the sprite. In the present example, sound effect was also added.

Figure 5: Emoji maker and the script of the eyes (for example) [7]

Versions where sprites are constantly switching costumes and thus entering into
animation are more spectacular. Take the Christmas card animation in figure 6 for
example: for one, the flames in the fireplace are moving constantly; for two, with
a click we can activate the bell, which will start ringing (making visual and sound
effects), the television, which will play a short cartoon; or the Christmas tree, which
will switch on its lights [8]. To translate this into programming terms, the bell has
two costumes, one illustrates it tilting left, while the other tilting right. To create
the continuous animation of the ringing bell, we need to repeat the instruction of
costume-switching in a count-controlled loop with some pauses. Since it is frequent
that animations will require the constant costume switching of sprites, it is worth
referring to this solution as a design pattern that we will return to use from time
to time.

The problem type of simple interactive animations can be utilized to introduce
the instructions of event handling and costume switching, while with the design
pattern of constant costume switching we can present count-controlled and infinite
loops.

A comparison of the instruction-oriented and the problem-type-oriented. . . 47



Figure 6: Interactive Christmas card and the scripts of the bell [8]

5.2. One-scene animations
The peculiarity of one-scene animations is that they bring to life short stories
with sprites that can already change their positions. In the example below I am
presenting another postcard, this time for Valentine’s Day [9]. The story goes
like this: the princess runs to her suitor, they exchange some words and then a
kiss. Simultaneously to the act of affection, a board, decorated with flashing lights,
appears with the good wishes (figure 7).

Figure 7: Valentine’s Day card and the script of the stage [9]

This problem contains three typical sub-problems of the problem type; it will
be best to refer to these solutions as design patterns.

48 P. Bernát



In the process of animation design, we often need to synchronize the timing
of the sprites’ activities. Staying with the above example, the characters on the
postcard need to start their conversation exactly when she arrives. Similarly, the
greetings need to appear exactly when he kisses her. We can synchronize the
activities by adding meticulously determined pauses but it is more transparent and
easier to modify if we split the animation into consecutive steps. In this case, we
define the activities of the sprites in each step, and we determine the order of the
steps through the messages sent by the stage. As we can see above, the stage sends
the messages belonging to the three steps one after another. The general design
pattern behind this solution can be referred to as the design pattern of splitting
into steps.

A further frequent sub-problem of animations is to move a sprite between two
points. This can be done in several different ways in Scratch, which are worth
comparing. In our example, the feet of the running princess are constantly moving,
which entails that next to the movement of the sprite, constant costume switching
also needs to be taken care of (figure 8).

Figure 8: Moving the princess between two points and switching
costumes constantly

Finally, dialogue is another recurring element of animations. In this case, we
need to synchronize the activities, more precisely, the utterances, of the sprites,
which seems to be easier by applying pauses, not by splitting into steps like before.
That is, while one character is talking, the other is politely waiting (figure 9).

Figure 9: The dialogue between the princess and her suitor

In summary, the problem type of one-scene animations can help introduce the
design patterns of dialogue, moving between two points, and splitting into steps,
and of course through these the instructions of movement and sending messages.
Additionally, we need some of the design patterns and instructions introduced

A comparison of the instruction-oriented and the problem-type-oriented. . . 49



with the other problem type (the constant flashing of the lights on the sides of the
Valentine’s board can be realized with the help of the design pattern of constant
costume switching).

Naturally, it is best to introduce the three design patterns of the problem type
gradually: first, we can start with a problem where sprites are motionless but they
can switch costumes while talking; second, we can move on to a scene where the
sprites not only talk but move as well; third, we can arrive to a multi-step animation
similar to what was described before.

5.3. Multiple-scene animations

Animations that narrate longer stories generally take place on various locations. In
this problem type what is new is splitting into scenes. In Scratch, sprites perceive
a specific background setting as an event; therefore, scenes can be timed simply
by setting the appropriate background. The specific scenes, then, can be split into
steps applying the design method introduced already with the previous problem
type. The animation illustrated in figure 10 takes place in space and on the surface
of a planet (own program). Consequently, the stage sets space as the background
first, but then when the scene ends, the surface of the planet is set. Since the
specific scenes are complex enough, their execution is split into further steps, as
the stage messages show.

Figure 10: A science fiction story and the scripts of the stage (own
program)

Needless to say, the problem type of multiple-scene animations will require us to
apply the design patterns and instructions, introduced before, for designing some
of the scenes.

50 P. Bernát



5.4. Overview of the three problem types

The next table summarizes the instructions and design patterns necessary for solv-
ing the previously examined problem types. I have attempted to put the problem
types in such an order that they can introduce instructions and design patterns
gradually, while also refreshing them.

simple
interactive
animations

one-scene
animations

multiple-scene
animations

instructions of event handling X X X
instructions of changing looks X X X

design pattern of constant costume switching X X X
instructions of count-controlled

and infinite loops X X X

design pattern of dialogue X X
design pattern of moving between two points X X

instructions of movement X X
design pattern of splitting into steps X X
instructions of sending messages X X

design pattern of splitting into scenes X
instructions of background switching X

Table 1: The instructions and design patterns (in italics) belonging
to the three problem types

6. Evaluation of the problem-type-oriented method
to teach programming

The problem-type-oriented method approaches gradually more complex problems
by splitting them into parts and offering design patterns to solve them. This is why
the present method is capable of developing problem-solving thinking, contrary to
the first method introduced.

Choosing the problems from within problem types guarantees that they make
sense, for one, and that they motivate students, for two. Next to the instructions,
this method introduces design patterns specific to the given problem type as well,
thus, enabling students to think independently and creatively within a problem
type. Last but not least, if the problems are ably selected, we can show students
the real potentials of a given programing language.

An important feature of the method is repetition. It uses the instructions

A comparison of the instruction-oriented and the problem-type-oriented. . . 51



and the design patterns over and over again but in slightly different ways, which
supports the gradual process of understanding the terms and methods all the more
deeply, guarantees constant practice, and convinces students that what they learned
is useful.

When teaching programming by this method, we guarantee that the specific
instructions will come up just like in programming practice (meaning both the
frequency and the types of sub-problems). That is, if an instruction is frequent
in programming practice, so it will appear in the problems we teach too. Certain
instructions may not be covered at all, but that is only because those instructions
are not that regular in programming practice either.

7. Conclusions

In my article I tried to demonstrate and assess the instruction-oriented and the
problem-type-oriented methods through an example. I have concluded that the
latter is not only without the shortcomings of the former, but it even has important
didactic advantages the other lacks.

It is fair to add, though, that the teachers or the authors of the programming
book need to have a great deal of extra skills and creativity, in addition to the
knowledge of the instructions, in the case of the problem-type-oriented method.
They need to be aware which are the problem types that can be solved smoothly
in the given programming language, along with the design patterns they require.
Most probably this is why the instruction-oriented method still tends to be applied
alongside the problem-type-oriented method in most contexts.

References

[1] Szlávi, P., Zsakó, L., Methods of teaching programming, Teaching Mathematics
and Computer Science 1/2 (2003), 247–257.

[2] Ford, Jr. J. L. Scratch Programming for Teens, Canada: Cengage Learning PTR,
2008.

[3] Code Club Projects, https://codeclubprojects.org/en-GB/scratch/ [cited 2017
May 31]

[4] McManus, S. Super Skills: How to Code in 10 Easy Lessons, London: QED Pub-
lishing, 2015.

[5] Scratch Magyarország Portál, http://scratch.mit.edu/ [cited 2017 May 31]
[6] Kamthane, A. Programming and Data Structures, London: Pearson Education,

2009.
[7] Emoji Maker!, https://scratch.mit.edu/projects/99608650/ [cited 2017 May 31]
[8] Santa Clause Christmas Card, https://scratch.mit.edu/projects/14888671/

[cited 2017 May 31]
[9] Dialoge love is in the air, https://scratch.mit.edu/projects/96729686/ [cited 2017

May 31]

52 P. Bernát


