
Programming Language History:
Experiences based on the Evolution of C++

Tibor Brunner, Zoltán Porkoláb

Eötvös Loránd University
bruntib@caesar.elte.hu

gsd@caesar.elte.hu

Abstract

Programming languages evolve continuously. From the very first exper-
imental versions users desire new features and techniques to make their life
safer and easier. The assumption is that most of these requests are about
to raise the level of abstractions on which the programmers can define their
programs. However, this general belief has not been supported by scien-
tific researches yet. In this paper we investigate the evolution of the C++
programming language from the point of the abstraction level of certain con-
structions. As the C++ language has a long history with well-defined steps of
standardization introducing various new language features and occasionally
deprecating deadends; it is a fortunate choice for such a research. We will
present how the abstraction level solving typical problems has been raised
version by version.

Keywords: C++ programming language, language evolution, language history

MSC: 68N15 Programming languages

1. Diversity of programming languages

The main tools of software development are programming languages. The pro-
gramming principles, e.g. object orientation, polymorphism, etc. are provided by
different solutions and techniques. For example JavaScript has object types for
encapsulation, function closure for data hiding and prototype based inheritance for
code reuse [5]. C++ or Java and many other languages provide classes for cov-
ering these three main elements of object orientation. Comparing C++ and Java
way of parametric polymorphism we can experience instantiation and type erasure
(universal polymorphism) respectively [6]. The languages can also be categorized
by many other features. There are domain specific languages for solving the tasks
of a restricted domain area [2] and general purpose languages for a broad range

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 63–71

doi: 10.14794/ICAI.10.2017.63

63



of projects. There are interpreted languages for fast prototyping and compiled
languages for efficient, but platform specific production development.

Naturally the languages evolve so they can satisfy the programmers’ require-
ments to make coding more effective and less error prone. This leads to the in-
troduction of new language features and occasionally the removal of deprecated
structures proved to be dangerous. These modifications should happen by conserv-
ing the main principles of the given language, however we can observe a tendency
according to which the languages tend to converge towards multi-paradigm style
[3].

The language creators have to take into account that the previously written
code bases already use many language features so deprecating them would be very
costly for the users. Therefore, it would be important to design a language feature
so precisely and consistently that minimizing the need to change them. The ques-
tion arises that which features should stay and which should go? Can we change
backward compatibility in order to keep the language clean? In the next section
we will examine some language features to answer these questions.

2. Exception handling in C++

Every program may come across an unexpected situation: a file supposed to use
is unavailable, a network connection is broken or some other conditions do not
meet the expectations. The definitive way to handle these unexpected situations
or certain kind of errors in modern programming languages is exception handling.
An exception is an event which cannot be handled at the place of its occurrence
either because of the lack of information of the calling context, or because it is not
its responsibility to handle this case. When such an event happens, the caller has to
be notified to manage the failure. It is the caller’s choice to rerun the questionable
block maybe after some modification of the environment, or skip the code block and
continue by ignoring the error or just finish the program with a message indicating
the error.

struct S {...};

void f() throw(int, const char*, S) {
if (error1)

throw 42;
else if (error2)

throw "Something bad happened.";
else

throw S();
}

Note that exception handling means an unconditional jump from the place of
failure towards the callers on the path of stack trace. Along this path an object
can be transported which carries information about the reason of the error. It is

64 T. Brunner, Z. Porkoláb



said that the object is thrown and the callers can catch it. In C++ the thrown
object may have any type [4].

For the first sight it seems that it would be useful to inform the caller side what
type of errors can occur so it can prepare on these, otherwise a general branch has
to be created to receive all unknown thrown object types.

int main() {
try {

f();
} catch (int i) {

do_something_with_int(i);
} catch (const S& s) {

do_something_with_S(s);
} catch (...) {

do_something_else();
}

}

In the signature of function f() we can see the possible types which can be
thrown. Not like in Java, the C++ functions are not enforced to enumerate all
the types it may throw. Both solutions have advantages and disadvantages. The
advantage of listing all thrown object types is that the caller can count on their
arrival. The disadvantage is that a function may invoke another function which is
provided by a third party library. In a new version of that library the exception
specification may change and this would make the exception specification of our
function invalid resulting the rewriting a possibly great amount of code which
relies on this information. Since the primary principle of C++ language is runtime
performance, it is not recommended to throw exceptions at all, as it is a very costly
operation. Therefore according to C++ conventions it is not a good attitude to use
exceptions if not necessary. This is also the reason why C++ chose not to oblige
listing of exception types.

It is also an important question that what happens if the rule is violated, i.e.
if an exception object is thrown of which the type is not enumerated in the speci-
fication list of the function. The following rules guide the control of this event.

• If the type of the thrown exception (or any of its base types) is listed in the
specification list then it can be handled properly.

• When the thrown type not in the specification list, then std::unexpected()
function is called. By default it calls std::unexpected_handler() or an
own handler can be set instead.

• std::unexpected_handler() calls std::terminate(). By default it calls
std::terminate_handler() or an own handler can be set instead. The
std::terminate() calls std::abort().

Programming Language History: Experiences based on the Evolution of C++ 65



• If an own handler throws an exception from std::unexpected() and it is
not a descendant of std::bad_exception type then it is re-thrown, otherwise
std::terminate() is called.

It is clearly visible that exception handling rules are quite complicated in the
case when an unexpected exception happens in a function call. No wonder this
feature has been deprecated in the language and noexcept specifier has been in-
troduced instead since C++11. This requires a boolean expression which indicates
whether the function may throw any type of exception. Should this rule be violated,
the std::terminate() function will be called.

3. Sum of areas

In the previous section we saw that exception specification turned out to be a
disadvantageous tool on the palette of C++ features, thus has been lead out from
the language. By contrast in this section we will follow through a set of tools which
have been introduced in chronological order and made the language simpler and
less error prone. We will present a series of solutions for the same task, namely for
summarizing the areas of different shapes.

The traditional solution is to maintain a vector of pointers to shapes where a
shape is represented by a class. This class should have a virtual area() function.
Subtype polymorphism allows us to point to a circle or a square with a pointer of
type Shape*. This way, as the definition of virtual function regulates, the area()
function based on the pointer’s dynamic type will be invoked.

Solution in C In C programming language there were no classes, nor methods
(i.e. function defined inside a class) [9], thus virtual function calls had to be
emulated by implementing this logic explicitly. A typical implementation of virtual
function calls is to build a virtual table. This means that every class which has
virtual methods, a virtual table is given which contains pointers to the specific
override functions in child classes. This way we can find which function needs to
be run based on the dynamic type of the object.

Let us create a Shape structure then which represent an ordinary shape by its
center coordinates x and y.

struct ShapeVTable {
double (*area)(const struct Shape* this);

};

struct Shape {
struct ShapeVTable* vptr;
double x, y;

};

66 T. Brunner, Z. Porkoláb



Next let us create a Circle structure. In C programming language we do not
have the opportunity to express subtype connection between the two structures,
but these can be linked by a member which contains the “inherited” members from
Shape structure. After all these we can create a sum() function which computes
the sum of the area of different shapes in an array.

struct Circle {
struct Shape base;
double r;

};

double circleArea(const struct Circle* c)
{

return c->r * c->r * 3.14;
}

void initCircle(struct Circle* c, double r) {
c->base.vptr->area = circleArea;
c->r = r;

}

double sum(Shape* shapes[], int size) {
double s = 0;
for (int i = 0; i < size; ++i)

s += shapes[i]->vptr->area(shapes[i]);
return s;

}

In this solution one can find many inconveniences. The “constructor”-like func-
tion, named initCircle() has to be called explicitly by the user of this module,
since it is needed to set the elements of the virtual table. The second is the invoca-
tion of the area() function. It is ugly to indicate the circle shapes[i] twice: for
acquiring the corresponding area function from the virtual table and for passing it
as parameter to the area function, as required by its signature.

Virtual functions C++ language gives a solution on these drawbacks by classes
and virtual functions [12]. The logic programmed manually above can be substi-
tuted by indicating that a function is virtual. This means that given a pointer to a
base class (i.e. its static type is Shape*) which actually points to a child class (i.e.
its dynamic type is Circle*) the area() function based on the dynamic type will
be invoked.

Of course subtype relation is needed between the two types which is expressed
by “public inheritance” [14]. This makes the sum() function simpler:

Programming Language History: Experiences based on the Evolution of C++ 67



class Shape {
double x, y;

public:
virtual double area() const = 0;

};
class Circle : public Shape {

double r;
public:

virtual double area() const {
return r * r * 3.14;

}
};
double sum(Shape* shapes[], int size) {

double s = 0;
for (int i = 0; i < size; ++i)

s += shapes[i]->area();
return s;

}

Templates and iterators Let us consider some more simplification of this pro-
gram. The function parameter restrict the container type on array. This could be
more general by using parametric polymorphism, i.e. templates for parameterize
the container type. The new signature of sum() function looks as follows:

template <typename Cont>
double sum(const Cont<Shape*>& cont);

The bridge between the container and the algorithms are iterators [1]. This
is an appropriate tool for inspecting the single elements of a container. Iterators
can also be considered the generalization of pointers, since the provided opera-
tions are similar. Depending on the type of an iterator they can be incremented,
decremented, dereferenced, added or subtracted to integers, etc. [11].

for (typename Cont::const_iterator it = shapes.begin();
it != shapes.end(); ++it)

s += (*it)->area();

It is not too comfortable to use such long iterator types, not to mention that
in case of changing the underlying container, the loop variable’s type might also
change. C++11 introduced the automatic type detection which means that the
type of a variable can be deduced from the type of the initialization expression.
Thus it is enough to use auto as the type of it.

68 T. Brunner, Z. Porkoláb



Sometimes it is sufficient to process only a subrange of the whole container.
However most of the times all elements must be considered. To support this use
case C++11 also introduced the range based for loop [10]. Its semantics are
equivalent as the code fragment in the previous example. This means that a range
based for loop can only be used for containers which provide begin() and end()
methods which define the range to iterate through.

for (Shape* shape : shapes)
s += shape->area();

Standard Template Library For common algorithms the Standard Template
Library gives a solution [13, 1, 11]. If not necessary then it is not worth writing
a code twice. Summarizing a bunch of elements is a so common task that the
built-in library already provides a solution which is even more general in the sense
that besides addition it can apply any binary operation on the elements and it can
start with any initial value (e.g. 1 for multiplication).

double op(double d, const Shape* shape) {
return d + shape->area();

}
template <typename Cont>
double sum(const Cont<Shape*>& shapes) {

return std::accumulate(shapes.begin(), shapes.end(), 0, op);
}

One can see the next step of simplification: it is unnecessary to define op()
operation as a standalone function if it is used only at one place in the program.
It would be more concise the use unnamed, in-line function for this purpose. In
C++11 lambdas [8] are available:

return std::accumulate(shapes.begin(), shapes.end(), 0,
[](double d, const Shape* shape){ return d + shape->area(); });

Shapes from different sources Now let us change the specification a bit and
suppose that the shapes come from several different sources: files, network, stan-
dard input, etc. It may not worth to maintain a container for storing the arriving
shapes first and then summarizing their areas in a second step. We create a function
instead which may accept any number of parameters:

double s = sum(
circleFromFile(),
squareFromNetwork(),
triangleFromStdIn());

Programming Language History: Experiences based on the Evolution of C++ 69



In C++11 we can create so called variadic templates which means that the
number of template arguments may vary based on the caller [7]. This way a set of
sum() function can be instantiated in compile time of which the argument numbers
are different. The recursion needs to stop for which a non-template function is used:

double sum() {
return 0;

}
template <typename... Args>
double sum(const Shape* shape, Args... shapes) {

return shape->area() + sum(shapes...);
}

The disadvantage of this solution is that the number of template instantiations
depend on the number of arguments. This increases the size of the compiled binary.
In C++17 folding expression solves this problem [15]. This expression applies a
binary operator on all elements of the variadic template argument list:

template <typename... Args>
double sum(Args... shapes) {

return (shapes->area() + ...);
}

4. Conclusion

Programming languages evolve continuously. New hardware solutions, changing
programming paradigms put new requirements on the languages. As we have seen,
C++ is not an exception; it has a long history of introducing new features and
sometimes deprecated old elements. However, we can experience a general trend:
new language features are aiming programming techniques which make the code
shorter, clearer and more maintainable.

As the programming paradigms evolved from the structural/procedural pro-
gramming represented by the C programming language towards object-orientation
with inheritance and polymorphism in C++, the same solution was expressed in
more compact and more understandable way. The abstraction level of the resulted
program has been raised. This evolution accelerated with the application of the
generic programming paradigm and the STL and summitted with the addition of
such functional tools like the lambda function in C++11 and the folding expressions
in C++17.

On the other hand, language elements which proved to be inherently complex
and uncomfortable, like the exception specifications, should be removed from mod-
ern programming languages.

70 T. Brunner, Z. Porkoláb



References

[1] Austern, M. H.: Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, 1998.

[2] Czarnecki, K., Eisenecker, U. W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, 2000.

[3] Coplien, J. O.: Multi-Paradigm Design for C++. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA. 1998.

[4] Ellis, M., Stroustrup, B.: The Annotated C++ Reference Manual. Addison-Wesley,
1990.

[5] Flanagan, D.: JavaScript: the definitive guide. O’Reilly Media, Inc., 2006.

[6] Ghosh, D.: Generics in Java and C++: a comparative model. ACM SIGPLAN
Notices, 2004, 39.5: 40-47.

[7] Gregor, D., Järvi, J.: Variadic templates for C++. In: Proceedings of the 2007 ACM
symposium on Applied computing. ACM, 2007. p. 1101-1108.

[8] Järvi, J., Freeman, J.: C++ lambda expressions and closures. Science of Computer
Programming 75.9 (2010): 762-772.

[9] Kernighan, B. W., Ritchie, D. M. (2006). The C programming language.

[10] Meyers, S.: Effective modern C++ (O’Reilly Media, 2014) ISBN 978-1-4919-0399-5
| ISBN 10 1-4919-0399-6

[11] Musser, D. R., Stepanov, A. A.: Algorithm-oriented Generic Libraries. Software-
practice and experience, 27(7) July 1994, pp. 623-642.

[12] Stroustrup, B.: A history of C++: 1979–1991. In The second ACM SIGPLAN con-
ference on History of programming languages (HOPL-II). ACM, New York, NY,
USA, 271-297. DOI=http://dx.doi.org/10.1145/154766.155375

[13] Stroustrup, Bjarne, The C++ Programming Language, 4th ed., Addison-Wesley,
ISBN 978-0321563842, 2013.

[14] Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley (1994)

[15] Sutton, A., Smith, R.: Folding expressions. N4191 http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n4191.html

[16] ISO International Standard, ISO/IEC 14882:2011(E) – Programming Language
C++, 2011.

[17] ISO International Standard, ISO/IEC 14882:2014(E) – Programming Language
C++, 2014.

Programming Language History: Experiences based on the Evolution of C++ 71


