
Using generator functions in algorithmic
visualizations

Zoltán Czirkos

Budapest University of Technology and Economics
Department of Electron Devices

czirkos@eet.bme.hu

Abstract

Electronic course materials can provide students a better learning expe-
rience compared to traditional paper-based presentation. This is especially
true in the case of programming, where proper understanding of algorithms
is based on understanding the computational processes they perform.

Web pages are particurarly suited for the development of these materials,
because the usual text and image based multimedia content can be accompa-
nied by automatically generated visualizations. As the web browser platform
is itself programmable, the visualizations shown by the browser can be con-
trolled by the learner, and can even be interactive.

However, the web browser platform is inherently event-driven. That re-
quires the developer to reformulate the algorithms to be presented in an
unusual manner, usually by converting the structured program code to a
finite-state automaton. This is time-consuming and error-prone work.

This article presents and evaluates several possible solutions to this prob-
lem. The main focus of the investigation is generator functions, a new feature
of JavaScript, available in ECMA-262 since 2015. This new language feature
enables the developer to implement the algorithms to be presented without
any modification to their control structure, thereby making development and
maintenance of the course materials easier.

Keywords: algorithm visualization, generator functions, javascript

MSC: 97Q60, 68N15, 68N20

1. Introduction

The key to understanding imperative programming is understanding the temporal
nature of the execution of algorithms. Variables in a program change their value,
therefore expressions are evaluated to different values as well [4]. Students have

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 73–80

doi: 10.14794/ICAI.10.2017.73

73

let max = arr[0];
for (let i = 1; i != n; ++i)

if (arr [i] > max)
max = arr[i];

Figure 1: Maximum selection

to understand how data is manipulated over time, because variables’ names might
not always represent their actual content.

Consider the well known algorithm of maximum selection in Figure 1. In this
code, the expression arr[i] > max does not make any sense on its own, without
context. “No element in the array is greater than the maximum element of the
array”, one having no experience with imperative programming might argue. How-
ever, the variable max is not necessarily storing the maximum value while the loop
is running; the postcondition ∀i,max ≥ arr[i] only holds after completing all the
iterations.

The temporal nature of programs calls for visualizations. When referring to
algorithm visualizations, we usually mean visualizing the data [7], and not the
algorithms themselves. The control flow of the algorithm is static, and cannot be
animated. Also, a flow chart does not help either the understanding of algorithms,
nor does it teach students how to come up with new ones. However by seeing data
being manipulated, one can understand the intention behind the lines of the code.

Modern browsers enable us to develop e-learning materials which provide stu-
dents a highly interactive learning environment. As opposed to books and static
slide presentations, this medium can contain animations which, unlike video snip-
pets, can even be interactive. With proper stylesheets, web pages can be used as
presentations as well. Research shows that this kind of technology is rather under-
developed [1]. That is a surprising fact, as lecturers who teach programming have
the ability to develop technology to implement these animations easily – maybe
create these animations automatically.

Please note that the improvement of learning effectiveness is not considered in
this article (see [6] for an in-depth analysis of motivational aspects). The aim of
this research was to develop a framework, which enables one to create visualizations
of algorithms in a browser. The main goal is that coding the animation should be
as simple as possible, specifically: the code generating the animation should have
the same control structure as the algorithm to be presented to the students.

2. Preserving state in an asynchronous environment

The asynchronous, event-driven nature of web applications is problematic with re-
spect to the constraint of the animation algorithm having the same control structure
as the algorithm that it presents.

Consider the simple loop on Figure 2 as an example. The task is to create a

74 Z. Czirkos

let i = 1;

while (i <= 10) {
print(i);

i += 1;

}

(a) The algorithm being explained

let i = 1;
wait_for_click();
while (i <= 10) {

print(i);
wait_for_click();
i += 1;
wait_for_click();

}

(b) Desired control structure

Figure 2: The algorithm controlling the animation.

debugging-like behavior, where the loop is paused before each iteration, in order to
explain to the students how the value of the loop variable is compared to the limit.

Figure 2a is the algorithm being presented. Figure 2b shows how the source
code behind the slide should ideally look like. It should have an identical control
structure, with some “wait here for the next mouse click” instructions inserted,
which enable the instructor to explain what is happening.

However, in an event-driven environment, the control is inverted. One does
not simply call a function to wait for the click of a button, but rather a callback
function is bound to the mouse click event. The loop of the source code cannot
be inside the body of the click handler, because it would restart counting on each
invocation of the function, ie. on each mouse click. Also we must not return from
inside the loop, otherwise the state, the value of the i variable would be lost.

Note that by referring to the state of the loop, we also refer to information
which is only stored in the execution environment: the instruction that is currently
executed. This state cannot be accessed in any way from the code (at least not
in a language which does not support continuations [2]). If we break the loop, we
lose the state. Any attempt to implement the wait for the next click will fail, as
the click handler must return, and cannot call the above code snippet as a function
either.

There are several partial solutions to the problem, but with conventional ele-
ments of structured programming, each has its own disadvantages.

2.1. Converting the algorithms to finite automata

Any algorithm can be represented as a finite automaton, ie. a state machine. In
this application, each mouse click would instruct the state machine to execute the
next set of instructions and make the transition to the next state. The states and
transitions of the automaton would be equivalent to the control flow graph of the
algorithm, with extra states added where a mouse click is expected.

This automaton might be coded in different ways. One approach is to implement
a class which represents the state machine, with its attributes being the local

Using generator functions in algorithmic visualizations 75

i = 1start i ≤ 10 print i i+ 1 end

Figure 3: State machine model of the algorithm on Figure 2b (il-
lustration only)

let events = [];
let i = 1;
while (i <= 10) {

events.push(function(i) {
print(i);

}.bind(null, i));
i += 1;

}

(a) Recording animation events

let step = 0;
button.addEventListener(’click’ ,

function() {
if (step < events.length) {

events[step]();
step += 1;

}
});

(b) Playback

Figure 4: Using closures to store visual effects of the animation

variables of the original code and the state variable itself.
The problem with this approach is that it is tedious and error-prone work for

the author to convert the algorithms to state machines. Figure 3 shows a simple
loop. Any other algorithm would get quite complex, the number of states grows
with the cyclomatic complexity of the algorithm and the required timing stops of
the animation as well. Automating this would require implementing a compiler,
which reads JavaScript code to translate the algorithm into a state machine repre-
sentation.

2.2. Recording events of the animation
An elegant but incomplete solution is the use of closures to store visual effects of
the animation.

A closure is a function which captures its environment when created, and can
use data from that environment when executed later. In JavaScript, closures are
first class citizens of the language, and can be stored in variables like any other
regular value [3]. Figure 4 shows an implementation of this idea: an array of
closures represents the steps on the animation and the functions are called later,
one at a time.

The idea is similar to recording the steps of the animation as a video, and
then playing it back frame by frame. This has a clear advantage compared to the
previous solution regarding the complexity of the algorithm: the control structure
is the same as the original, it is a simple loop. It could be easily adapted to recursive

76 Z. Czirkos

function∗ infinite_fibonacci() {
let current = 0, next = 1;
while (true) {

yield current;
let temp = current + next;
current = next;
next = temp;

}
}

(a) Definition of a generator function

let gen = infinite_fibonacci ();
for (let i = 1; i <= 10; ++i)

print(gen.next().value);

(b) Instantiation of the generator

Figure 5: Generator function yielding an infinite stream of Fi-
bonacci numbers

functions as well.
The disadvantage however is that all interactivity is lost. If the algorithm to be

presented requires some input while it is running (for example reading the limit of
the loop from the keyboard), its output cannot be determined in advance.

2.3. Using an interpreter

Storing the state of a running algorithm, pausing and resuming it, is also possible
by creating a full-fledged interpreter. In this case, the program code controlling
the animation would be written in a new, domain-specific programming language
designed specifically for this task. The JavaScript application in the browser would
be running that code, thereby having complete control over its execution.

This approach requires tremendous work. Defining a new language, implement-
ing its parser and execution framework is a complex project. There are open source
projects aiming for this task [5], but these interpreters would have to be extended
for this application. The most notable difficulty is that the program running inside
the interpreter should be provided with access to the running environment itself.
For example, the animation might contain some statements to print a number to
the screen or to set the color of a shape in a figure – this is only possible if it has
access to the DOM (Document Object Model) of the web page it is embedded into.

3. Using generator functions as animation timers

The 2016 version of JavaScript defines the notion of generators [3]. A generator
function is a special function capable of yielding many values. Instead of having
return statements, these use the keyword yield to “send” a value to their caller.
Contrary to normal returning, yielding a value does not stop the execution of
the function, rather it is only suspended. Therefore its state, local variables are

Using generator functions in algorithmic visualizations 77

function∗ simple_loop() {
let i = 1;
yield false;
while (i <= 10) {

print(i);
yield false;
i += 1;
yield false;

}
yield true;

}

(a) Loop animation. Execution will be
paused at the yield statements

h

let anim1 = simple_loop();
button.addEventListener(’click’ ,

function() {
anim1.next();

});

let anim2 = simple_loop();
let timer = null;
function next() {

if (gen.next().value)
clearInterval (timer);

}
timer = setInterval(next, 350);

(b) Running the animation. Step by
step execution with user interaction and

timed execution

Figure 6: Values yielded can be used to control the animation

preserved in the running environment, and execution can be resumed later. Figure 5
shows a generator function that yields an infinite stream of Fibonacci numbers.

The yield statement can be used to suspend an algorithm and resume it later.
In the animation application, the animation algorithm itself will be a generator
function. At each state when the animation is to be stopped to wait for a click,
a yield statement must be inserted into the code. This will pause the execution
of the algorithm until it is resumed by the following next member function call
of the instantiated generator. Figure 6a shows how this can be implemented in
JavaScript. Note that the animation is not prerecorded, so it can be interactive as
well – it can even input data from the user while it is running.

3.1. Utilizing the values yielded to control the animation
Generators are able to send values to their caller via the yield statement. In our
case, this can be used as a communication channel between the algorithm and the
controlling environment. For example, yielding the value false might represent
that the algorithm is still running, and true might tell the controller that the
animation is finished, ie. there are no more steps. In Figure 6b this this is used to
stop the timer controlling the animation.

JavaScript also has a yield* keyword, which instantiates a generator, and calls
its next() method until the generator is finished. Meanwhile it yields all the
values the generator has yielded. This enables the author to use recursion in the
animations. Figure 7 is and example of a tree traversal routine written in this style.

Using yield* in the recursive call creates a behavior that is well known as “step
into” in debuggers of integrated development environments. As all the values are

78 Z. Czirkos

function∗ traverse_tree(root) {
if (root != null) {

yield∗ traverse_tree(root. left);
yield;
yield∗ traverse_tree(root. right);

}
}

yield∗ traverse_tree(root);

Figure 7: Animating recursive functions

passed to the caller, the animation controller will wait until the next click for each
node of the tree. To create a “step over” like behavior (for which the function call is
executed completely, not step by step), one could simply instantiate the generator
and call next() on it as many times as necessary, but without yielding anything.

4. Conclusion

Generator functions can be used very effectively to implement algorithmic visual-
izations in JavaScript. The ability to suspend and resume execution of a function
allows one to implement the visualization with the same control structure as the
algorithm itself to be visualized. Also the algorithm is running directly inside the
browser, thereby it has access to the DOM. Therefore development of interactive
course material in a web page is simple and straightforward with this technique.

References

[1] Shaffer, Clifford A., et al. Algorithm visualization: The state of the field. ACM
Transactions on Computing Education (TOCE) 10.3 (2010): 9.

[2] Reynolds, John C., The discoveries of continuations. Lisp and symbolic computa-
tion 6.3 (1993): 233-247.

[3] Ecma International, ECMAScript R© 2016 Language Specification. https:
//www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf. Re-
trieved 5th Dec. 2016.

[4] Dehnadi, Saeed, Richard Bornat, and Ray Adams. Meta-analysis of the effect
of consistency on success in early learning of programming. PPIG, 2009.

[5] JSCPP, A simple C++ interpreter written in JavaScript. https://github.com/
felixhao28/JSCPP. Retrieved 12th Apr 2017.

[6] Nikula, Uolevi, Orlena Gotel, and Jussi Kasurinen. A motivation guided
holistic rehabilitation of the first programming course. ACM Transactions on Com-
puting Education (TOCE) 11.4 (2011): 24.

Using generator functions in algorithmic visualizations 79

[7] Victor, Bret. Learnable programming. Worrydream.com (2012). http://
worrydream.com/LearnableProgramming/. Retrieved 19th Apr 2017.

80 Z. Czirkos

