
Some aspects of using RPC

Sándor Királya, Szilveszter Székelyb,
Roland Királyc, Tamás Ballad

aEszterházy Károly University
kiraly.sandor@uni-eszterhazy.hu

bImperial College London
szekelyszilv@gmail.com

cEszterházy Károly University
kiraly.roland@uni-eszterhazy.hu

dEszterházy Károly University
balla.tamas@uni-eszterhazy.hu

Abstract

In a client-server network, sockets provide a mechanism for a program to
establish a connection to another program and send messages back and forth.
This interface underlies the working of a mechanism that allows a program
running as a process on computer A to call a procedure or a function on
computer B, pass parameters to it and have the result returned. After the call,
the caller process on A is suspended and execution continues on B. When the
callee procedure or function on computer B finishes and produces its results,
it is passed back to the calling environment on computer A. Then the process
on A continues the execution from where it was suspended. This mechanism is
called the Remote Procedure Call (RPC). The question is how long must the
process wait for the answer to arrive from computer B and why? To answer
the question, this paper describes the structure of third generation RPCs and
analyses them, putting the focus on the way of marshalling parameters, and
performance. To facilitate the choice between them this paper represents
the results of performance tests carried out by the authors. The tests are
implemented in Java, Ruby, and C++ using GRPC, XML-RPC, and JSON-
RPC with calls between the languages to create a broader picture of their
performance characteristics.

Keywords: Remote Procedure Call, Google Protocol Buffer, marshalling

MSC: 68N19, 68M14, 68M12

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 145–156

doi: 10.14794/ICAI.10.2017.145

145



1. Introduction

All modern computer applications contain functions and procedures. These sub-
routines generally work independently so they could even be run on a remote com-
puter. To call them network communication is necessary that is performed via RPC
mechanisms. The main problem is that the caller and the calle procedures run on
different machines and in different address spaces. If the software architectures are
not identical or the data structures are complex, passing the parameters and the
results can be complicates. In spite of the difficulties, RPC is very popular and
used in distributed systems.[4] To understand the working of RPC it is needful to
examine how local procedure calls are implemented.

Before calling a procedure the processor stores the state of the caller procedure
on the stack and the local variables while the running of the current procedure
will be suspended. The caller pushes the parameters onto the stack in order, last
one first. Then the processor transfers the control to the address determined by
the call. The compiler is responsible for saving the necessary registers, allocating
stack space for local variables, and then restoring the registers and stack prior to
the return from the callee. After the procedure has finished running the processor
puts the return value in a register, then removes the return address, and transfers
control back to the caller. The caller thereafter removes the current parameters
from the stack, returning it to the original state.

Unfortunately, this method cannot be performed if the callee and the caller
procedures are run in different computers since there are two different running
contexts. That is the reason why another function is used that looks like the remote
procedure and it contains additional code for sending and receiving messages over
the network. This is the stub function. Figure 1 shows the working of remote
procedure call for a function abs that returns a float value.

The sequence of operations labelled in Figure 1 is as follows: The client calls
a local function (1) that seems to be the actual function but it is the client stub
function that serializes the parameters into a message (raw byte stream) (2), and
then sends the message to the server machine (3) using socket interfaces. The
server stub deserializes the parameters from the raw message (4), and then calls
the server function (5) passing it the arguments that it received from the client using
the standard calling sequence. After completing the server function, it passes the
return value to the server stub (6) that serializes it into a message (7) to send to the
client stub. The message is sent back across the network (8) and the network layer
passes the message to the client stub (9) that reads and deserializes it then returns
the result to the client function (10). Figure 1 represents a remote procedure call
applying passing parameters by value which is simple since it just copies the value
into the network message. Passing by reference requires different technique. It
is necessary to send a copy of the arguments over, place them in memory on the
remote computer, pass a pointer to them to the server function, and finally send
the object back to the client, copying it over the reference. For complex structures,
it is needed to copy the structure into a pointerless representation, transmit it, and

146 S. Király, Sz. Székely, R. Király, T. Balla



Figure 1: The mechanism of the Remote Procedure Call and the
Local Procedure Call

reconstruct the data structure on the remote machine. [13, 14, 5]
For both the client program and the callee function the whole process seems to

be only ordinary, local procedure call, using the normal calling conventions. Only
the server and the client stubs know that the call is remote. Consequently, the
performance of RPC depends on the stub implementation apart from the network
conditions. Most programming languages were not designed to handle remote
procedures natively with built in transparent stubs, therefore, they are not capable
of generating the necessary stub functions. To enable them for performing remote
procedure calls, the most common solution is to provide a separate compiler that
can generate both the client and server stub functions. The input of this compiler
comes from the remote procedure call interfaces written by a programmer. These
are written in an interface definition language (IDL) for example proto3 in gRPC.
After the RPC compiler is run, the server and client programs can be compiled
and linked with the appropriate stub functions. To initialize the RPC mechanism,
both the client and the server codes need to be changed.

2. APIs for RPC

To complete the stub operations, RPC implementations generally use supporting
libraries. They must provide the following operations:

Some aspects of using RPC 147



• Name service operations: They must register themselves and support
servers to advertise these bindings and clients to find them.

• Binding operations: They establish client/server communications using
the appropriate protocol.

• Endpoint operations: They register endpoint information (protocol, port
number, machine name) to the name server and listen for procedure call
requests.

• Security operations: They provide the authentication procedure and a
secure communication channel between the two computers.

• Marshaling/data conversion operations: They pack data into package
for transmitting onto a network and functions to reconstruct it. Sometimes,
they have to serialize the messages as well.

• Stub memory management and garbage collection: It may occur that
stubs need to allocate memory for storing parameters, particularly in case
of accomplishing pass-by-reference technique. RPC library needs to allocate
and clean up such allocations. For RPC packages that support objects, the
RPC system must provide the deletion of unnecessary references to objects.

• Program ID operations: They allow applications to access identifiers of
sets of RPC interfaces for communication.

• Object and function ID operations: They support passing references to
remote functions or remote objects to other processes. [9]

The more effective the implementation of these operations the faster the RPC
solution will be.

3. Third generation RPCs and Web Services

The first RPC solutions that supported the object oriented programming tech-
niques were Microsoft DCOM (Distributed Component Object Model) and CORBA
(Common Object Request Broker Architecture). CORBA also includes IDL to
specify the name of classes, their attributes, and their methods. It is based on bi-
nary serialization.[5] The increasing popularity of internet use led that web browsers
became the dominant model for accessing information. Clients access the service
via the HTTP protocol that allows services to be published, discovered, and used
in a technology-neutral form. Web server is configured to recognize the part of the
URL pathname and pass the request to a specific plug-in module. This module
can strip out the headers, parse the data (if needed), and call any other functions
or modules as needed. [12, 3]

148 S. Király, Sz. Székely, R. Király, T. Balla



3.1. XML-RPC

XML-RPC was designed in 1998 as an RPC messaging protocol for serializing
procedure requests and responses into human-readable XML. The XML format
uses HTTP protocol to send data from a client computer to a server computer using
traditional web ports for RPC. XML-RPC only focuses on messaging and therefore
consists of only three small parts: XML-RPC data model is a set of types used in
passing parameters, return values, and faults (error messages). XML-RPC request
structures that contain method and parameter information for supporting HTTP
requests. It response structures that contain return values or fault information
for supporting HTTP responses. For the performance test several libraries are
available for example Apache XML-RPC that was selected to compare to other
solutions. [10]

3.2. SOAP and WSDL

The XML-RPC specification was used as a basis for creating SOAP (Simple Object
Access Protocol) that is an open-standard, XML-based messaging protocol for ex-
changing information among computers. It is platform- and language-independent
and enables client applications to easily connect to remote services and invoke re-
mote methods. For creating a standardized messaging structure it is necessary
to define a service definition document in WSDL (Web Services Description Lan-
guage) so that to create and check the proper SOAP messages. Though, WSDL
is an XML document, it is hard to create and read it by human, therefore tools
such as Java2WSDL or wsdl.exe (in .NET) are used to generate template code
for programmers. [5] SOAP and WSDL are complex and highly-verbose formats,
therefore their performances are naturally worse, than XML-RPC. Furthermore, if
correctly implemented all XML-RPC libraries are compatible the same cannot be
said about SOAP. The protocol has extensions which are not all implemented in
all libraries. These properties make it somewhat unsuitable for our cross platform
testing and was therefore omitted from the tests.

3.3. JSON-RPC

JSON (JavaScript Object Notation) is another marshaling format. It is based
on JavaScript and does not need to be generated since it is human readable and
writable, and it contains less redundancies. It has much less markup overhead
compared to XML. This is just a messaging format and JSON do not offer RPC
libraries and support for stub operations. JSON-RPC is very similar to XML-RPC
but encoded in JSON instead of XML. While JSON has less markup overhead the
format is still textual and the savings are not large. This was also evident as for
the example none of the available Ruby libraries had documentation. [9]

Some aspects of using RPC 149



3.4. Google RPC and Google’s Protocol Buffers
gRPC (Google RPC) is a cross-platform, language and platform independent,
general-purpose infrastructure used by Google Inc. and they made it public in
2015. It can automatically generate idiomatic client and server stubs for service in
a variety of languages and platforms. It uses Protocol Buffers that is a flexible, ef-
ficient, automated mechanism for binary serialization of structured data. [8] Users
need to define how they want their data to be structured once in Protocol Buffers
language (proto3) and the signature of the methods that will be called remotely.
Then they can use a generated source code to easily write and read their structured
data to and from a variety of data streams and using a variety of languages. Figure
2. shows the relevant sections of the proto file used for the performance test

service Database {
rpc Request(InfoRequest) returns (Info) {}

}
message Info {

int32 id = 1;
string first_name = 2;
string last_name = 3;
int32 age = 4;
string email = 5;
string phone = 6;
bool newsletter = 7;
float latitude = 8;
float longitude = 9;
bytes photo = 10;

}

message InfoList {
repeated Info infos = 1;

}

message InfoRequest {
int32 id = 1;
bool photo = 2;

}

Figure 2. Services and messages defined in Protocol Buffers

The defined data structure is stored in .proto files. Each protocol buffer message
is a small logical record of information, containing a series of name-value pairs.
Once the user defined their messages, they run the protocol buffer compiler for
their application’s language on their .proto file to generate data access classes.
These provide simple accessors for each field as well as methods to serialize/parse
the whole structure to/from raw bytes – so, for instance, if the chosen language is

150 S. Király, Sz. Székely, R. Király, T. Balla



C++, running the compiler on the user’s .proto file will generate a class. User can
then use this class in his application to populate, serialize, and retrieve the class
protocol buffer messages. The compiler also provides the stub implementations that
can be inherited to code the remote function definition. The protocol buffer message
encoded in binary format is much smaller than its XML code but is not human-
readable and human-editable. Protocol buffers result not only binary format but
are 3 to 10 times smaller and 20 to 100 times faster than XML for serializing
structured data that may one of the reasons for the higher performance of gRPC.
[11]

4. The performance test of the implemented RPCs

Based on the structure of RPC the performance differences of the different RPC
solutions must come from the differently implemented stub operations. The RPC
solution that performs stub operations the fastest way and produces the shortest
data for sending must have the best performance. We have performed benchmarks
to test the performance of each of these RPC methods and compare them against
each other. (See the signature of the methods in Figure 2.) For the request method
we have written server and client implementations in C++, Java, and Ruby. The
server part reads sample data that has multiple data formats, including strings,
integers, floats, and 1MB of binary data. After the data has been read it starts
listening for connections from the client. The client can only send one request to
the server, which is requesting one of the data items with an option to specify
whether to include the binary data part or not. The request method in the client
program was revoked 100 times, the client program was run 10 times. For gRPC
the gRPC and Protobuffers library were used, for XML RPC and JSON RPC
the most popular library was selected for each language. These are: for XML-
RPC in C++ xmlrpc-c [10], in Java Apache XMLRPC [2], in Ruby the standard
library XMLRPC [16] for JSON-RPC in C++ jsonrpccpp [6], in Java JSON-RPC
2.0 by [d]zhuvinov [s]oftware [7], in Ruby jsonrpc2.0 with webrick [8]. The only
restriction was that it needed to be able to start listening for connections without
a large framework that it would be deployed part of. This means that for example
Servlet based Java implementations were excluded. Docker containers were created
for each of these server and client implementations so that they had a runtime
environment that is not dependant on the host system. This caused some overhead
when starting the client programs, as a new Docker instance had to created for
each run, but we found that this did not influence our overall conclusion. We used
a Linux rack to run the server instances and a commodity laptop to run the client
instances to simulate somewhat real conditions and connected both of them to
the subnet with 125 MBit/s wired connections to exclude the interference in WiFi
or otherwise long distance internet connection. With the RPC method we cross
tested all of the languages with each other to get more measurements and lessen
the influence of particular implementations on the overall results. It also has to be
noted while XML-RPC implementations were easy to find, JSON-RPC is not as

Some aspects of using RPC 151



widespread judging from the available libraries. The only server library available
for Ruby had some issues and no documentation. Table 1 and Table 2 show the
results.

server
grpc small cxx java ruby

client
cxx 1.446586288 1.538543454 1.843524988
java 2.385020082 2.574738704 2.862809575
ruby 2.335048487 2.357542191 2.329401348

xml-rpc small cxx java ruby

client
cxx 1.745901795 1.789834515 6.283093411
java 1.872503282 1.932996376 6.336315439
ruby 2.531053102 2.39889046 6.991524778

json-rpc small cxx java ruby

client
cxx 1.746023073 5.997436199 6.166025146
java 1.857895238 6.242739725 6.315714135
ruby 2.245318859 6.360743144 6.627618996

Table 1: The measured average values in seconds after 100 invokes
and 5 runs with small test data

The overall results we have found in our test runs it that overall gRPC per-
formed the best of all three, with XML RPC and JSON RPC having similar per-
formance characteristics with the differences between mainly attributable to im-
plementation details of the libraries. (Table 1) With small test data, without the
1MB binary, we found that while the different methods had similar performance, in
most cases the gRPC was slightly faster except, for example, in the java server java
client case where the gRPC implementation did 2.5s while the XML RPC finished
in under 2s. In XML-RPC, the Ruby server implementation almost tripled the
amount of time required to run the tests regardless of client language. The same
can be observed in JSON RPC with the Java and Ruby server implementation.
With small test data, C++ implementations were faster than the Java or Ruby
ones. The languages, in which the stub operations are implemented also influences
the performance. All RPC solutions performed better in C++ with small test data

With the inclusion of the binary data the differences were more pronounced
(see Table 2). gRPC performed better except one case. How much faster it was
depended on the language combination used. Only the Ruby server with the Java
client did beat the time of the gRPC solution. The XML-RPC Ruby client was
generally slower than other clients, taking almost twice the time to complete the test
runs. The increased performance of gRPC can be attributed to the transmission
format. Both XML and JSON are textual formats. While binary versions exist,
these are not as widely used and the RPC libraries do not use them. Because
of their text nature to include binary data in them it needs to encoded to some

152 S. Király, Sz. Székely, R. Király, T. Balla



server
grpc big cxx java ruby

client
cxx 10.49837347 19.78831593 10.61724809
java 11.50234759 11.65334163 20.65961758
ruby 11.44378246 15.36368512 16.35586611

xml-rpc big cxx java ruby

client
cxx 16.87760948 23.02763573 17.56123346
java 16.70705216 22.97051365 16.33389231
ruby 31.4515749 36.40461197 26.93085479

json-rpc big cxx java ruby

client
cxx 23.85746603 23.59290045 23.09974722
java 18.68594349 21.19607064 18.29131204
ruby 17.81739152 17.89413377 17.48205703

Table 2: The measured average values in seconds after 100 invokes
and 5 runs with binary data

representation that only uses printable ASCII characters, in most cases to Base64.
This increases the data to be transmitted by 4/3 and the overhead of the markup
structure is also not insignificant. gRPC uses Protobuffers as its wire format, which
is a binary format. Binary data can be included as is, no conversion necessary. It
also does not add much overhead to the structure, only field identifiers are added
for backward compatibility.

4.1. RPC in Android
We have also tested the different RPC solutions using an Android mobile as client.
We implemented gRPC, XML-RPC and JSON-RPC client programs in Android
and tested them.

private ManagedChannel getChannel() {
if (channel == null) {

channel = ManagedChannelBuilder.forAddress("192.168.32.4",
50051).build();

}
return channel;

}

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Some aspects of using RPC 153



setContentView(R.layout.activity_main);

helloWorldText = (TextView) findViewById(R.id.resultText);
fromNumber = (EditText) findViewById(R.id.fromNumber);
tillNumber = (EditText) findViewById(R.id.tillNumber);
timeText = (TextView) findViewById(R.id.timeText);

}

public void TestButtonClicked(View view) {
int from = Integer.valueOf(fromNumber.getText().toString());
int till = Integer.valueOf(tillNumber.getText().toString());
long now = System.currentTimeMillis();
for (int i = from; i <= till; i++) {

InfoRequest message = InfoRequest.newBuilder().setId(i).
setPhoto(false).build();

Info reply;
try {

reply = getBlockingStub().request(message);
} catch (Exception e) {

helloWorldText.setText(e.getMessage());
return;

}

if (reply != null)
helloWorldText.setText(reply.getFirstName() + " "

+ reply.getLastName());
}
timeText.setText(String.valueOf(System.currentTimeMillis() -

now) + " ms");
}

}

Figure 3. The code segment of the gRPC client for Android

The mobile phone was connected the the previously mentioned server through
802.11n WIFI network. Other users were banned from the network during the test.
The client applications were run in an Samsung Galaxy S6 phone and started to
work touching the button of the application. Table 3 shows the results: gRPC
achieved more than the others in both categories.

5. The performance test of the implemented RPCs

In this paper, the structure of third generation RPCs was analysed to find answers
for the differences in the performance of different RPC solutions: Google RPC,

154 S. Király, Sz. Székely, R. Király, T. Balla



small data big data
xml-rpc 1.7213467 24.3345198
json-rpc 1.6221341 23.8723456
grpc 1.5448432 19.8106791

Table 3: The measured average values in seconds after 100 invokes
and 5 runs without and with binary data using an Android phone

XML-RPC and JSON-RPC. The chosen libraries implemented the stub operations
in different ways and used different formats for marshalling. gRPC with Protocol
Buffers performed best in our tests because of the fast binary serialization method
of structured data, that resulted in smaller sized encoded messages. Our tests
proved, that the chosen computer language has an influence on the performance
of RPC invocations. gRPC proved faster in C++ implementations than in Java
or Ruby with small test data. In case of XML-RPC and JSON-RPC, Ruby server
with Java client proved to be the fastest with large test data. When the client
program was executed in an Android mobile phone, gRPC performed better than
the other two solutions.

References

[1] Apache XML-RPC. Available at https://ws.apache.org/xmlrpc/

[2] Apache XML-RPC, Available at https://ws.apache.org/xmlrpc/

[3] Bagci, H. and Kara, A. A Lightweight and High Performance Remote Procedure
Call Framework for Cross Platform Communication, ICSOFT-EA 2016 Abstracts,
Available at http://web.mit.edu/6.826/www/notes/HO11.pdf

[4] Birrell, A.D and Nelson B.J. Implementing Remote Procedure Calls, ACM
Transactions on Computer Systems Vol. 2, No. 1, February 1984, Pages 39-59

[5] Birrell, A.D. Secure Communication Using Remote Procedure Calls, ACM Trans-
actions on Computer Systems Vol. 3, No. 1, February 1985, Pages 1-14

[6] JSON-RPC 2.0. Essential Java libraries and tools for JSON-RPC 2.0development,
Available at http://software.dzhuvinov.com/json-rpc-2.0.html

[7] JSON-RPC 2.0 Available at http://software.dzhuvinov.com/json-rpc-2.
0-client.html

[8] JSON-RPC 2.0. for Ruby, Available at https://github.com/chriskite/jimson

[9] Krzyzanowski, P. Remote Procedure Calls, Available at https://www.cs.
rutgers.edu/~pxk/417/notes/08-rpc.html

[10] Open Access Articles - Top Results for XML-RPC. Available at http://research.
omicsgroup.org/index.php/XML-RPC

[11] Protocol Buffers, Available at https://developers.google.com/
protocol-buffers/docs/overview#whynotxml

Some aspects of using RPC 155



[12] Schroeder, M. D. and Burrows, M. Performance of Firefly RPC, Available at
http://web.mit.edu/6.826/www/notes/HO11.pdf

[13] Tanenbaum, A.S and Renesse, R. A Critique of the Remote Procedure
Call Paradigm, Available at http://www.cs.vu.nl/~ast/Publications/Papers/
euteco-1988.pdf

[14] Tanenbaum, A.S. and Steen, M. Distributed Systems: Principles and Paradigms,
Pearson Education Inc. ISBN:978-15-302817-5-6

[15] What is gRPC? Available at http://www.grpc.io/docs/guides/

[16] XML-RPC for Ruby. Available at https://github.com/ruby/xmlrpc

156 S. Király, Sz. Székely, R. Király, T. Balla


