
Cognitive tools in use

Péter Szlávi, Gábor Törley, László Zsakó

ELTE IK
szlavip@elte.hu

pezsgo@inf.elte.hu
zsako@caesar.elte.hu

Abstract

As a programmer is solving a problem, a number of conscious and un-
conscious cognitive operations are being performed. Problem-solving is a
gradual and cyclic activity. As the mind is adjusting the task to its schemas
formed by its previous experiences, the programmer gets closer and closer to
understanding and defining the task. The primary cognitive operations the
programmer uses to set up refining models are: linguistic abstraction, anal-
ogy, algorithmic abstraction, decomposition-superposition, conversion, intu-
ition, and variation. In our previous articles [1, 2], we have described these
cognitive tools, and now we will examine their operation.

Keywords: programming, didactics, systemic thinking, thinking toolkit, algo-
rithmic abstraction, lexicality, creativity

MSC: 97D50, 97Q30, 97Q99

1. Introduction

While programmers are working hard to solve a programming task, consciously
or unconsciously they use a wide variety of thinking methods. [1] As starting off
from the task, they refine it several times to their own existing schemes based
on experience, continually and circularly as well as more precisely reformulating
the task. In other words, programming is a sequence of more and more refined
(pattern-based) models, where you need to get to a stage where the vocabulary
(i.e. the set of instruction patterns) of the programming language chosen serves as
a basis for the model. (Figure 1)

The primary cognitive operations the programmer uses to set up refining models
are:

• linguistic abstraction (see [1]),

• analogy (see [1]),

Proceedings of the 10th International Conference on Applied Informatics
Eger, Hungary, January 30–February 1, 2017. pp. 285–294

doi: 10.14794/ICAI.10.2017.285

285



• algorithmic abstraction,

• decomposition-superposition,

• conversion,

• intuition,

• and variation . . .

The programmer uses these operations many times and for manifold purposes.
This is why we will also be mentioning a certain operation at more occasions.

Figure 1: The abstract model of programming

As our first topic, we will introduce abstraction. We have decided not to distin-
guish linguistic abstraction from algorithmic, because in the thinking process they
go pretty much hand in hand. Our chief concern in this section is to examine how
the programmer utilizes abstraction in order to find an effective and safe solution
to the programing problem.

As we move on to the next section, we will revisit a hot topic in education
politics, namely, whether our education system should put more emphasis on lexi-
cality, instead of creativity. Obviously, we are reflecting on this question from the
perspective of programming, in light of the cognitive tools in focus.

286 P. Szlávi, G. Törley, L. Zsakó



2. Abstraction

Programming theses [4, 5, 6] are the foundations of high-level abstraction opera-
tions [1, 2, 3]. In this chapter we are presenting how we can create programming
theses with the use of the cognitive operation of abstraction [2].

Generalization brings us to the notable classes of search methods. Let us start
from the well-known algorithm of linear search. By introducing the following terms
(Table 1) we will arrive to a fairly general search algorithm. [5, pp. 5–7] The search
is performed in sequence X.

New notion Explanation
L ∈ H∗ sequence of possibilities properly selected sub-sequence of

the original X (L ⊆ X)
‖.‖: H∗ → N length the length of the sequence (num-

ber of elements)
σ: H∗ → H∗ sequence shortening ∀ L ∈ H∗: σ(L)=L1 ⊂ L (⇒

‖L‖ > ‖L1‖)
ε: H∗ → N element index selection ∀ L ∈ H∗: ε(L) ∈ [1..‖L‖]

Table 1: The terms of generalized search

The algorithm of the generalized search thesis:

L:=X
While ‖L‖>0 and not T(X(ε(L))) do

L:=σ(L)
End While
Exists:=‖L‖>0
If Exists then Index:=ε(L)

Let us match up the general notions with the “specific” notions of linear search.

L:=(xi:i ∈ [e..N]) – all through, e : where we are=1..N+1 (LS1)
It is clear that L can be identified, even substituted, by the index
of the first element:
L:=L(e) → e (LS1’)
ε(L):=ε(L(e)):=e – first element (LS2)
σ(L):=σ(L(e)):=(xi:i ∈ [e+1..N] ⊆ (xi:i ∈ [e..N])) – the rest, short-
ened sequence

(LS3)

(LS1)⇒ ‖L(e)‖:=N-e+1 (LS4)
(LS4)⇒ ‖L(e)‖>0 ⇐⇒

N-e+1>0 ⇐⇒
N+1>e ∧ e ∈ N ⇐⇒
N ≥ e (LS5)

After “updating” the notions, let us take a look at the “basic” algorithm, which uses
the general notions. We have added our comments to the table. (Table 2)

Cognitive tools in use 287



Generalized search ⇒ Linear search
L:=X (LS1’) i:=1 [sequence starts with 1]
While ‖L‖>0 (LS5) While i ≤ N

[search can be performed still]
and not T(X(ε(L))) do (LS2) and not T(X(i))

[ith is like that?] do
L:=σ(L(ε(L))) (LS3) i:=i+1 [sequence starts with next]

End While End While
Exists:=‖L‖>0 (LS5) Exists:=‖L‖>0 [is it?]
If Exists then If Exists then

Index:=ε(L) (LS1’) Index:=e

Table 2: Comparison of generalized and linear search

In the Table 3 we have collected the ε- and σ-functions of well-known searches.

Definition Comment
1 εF ((xi,...,xj)):=i first element
2 εL((xi,...,xj)):=j last element
3 εM ((xi,...,xj)):=i+ j DIV 2 middle element
4 σF ((xi,...,xj)):=(xi+1,...,xj) without first element
5 σL((xi,...,xj)):=(xi,...,xj−1) without last element
6’ σM<((xi,...,xj)):=(xi,...,xm)

where m=(i+ j DIV 2)-1
elements preceding middle

It is clear that
σM<((xi,...,xj))⊆(xi,...,xj)

6” σM>((xi,...,xj)):=(xm,...,xj)
where m=(i+ j DIV 2)+1

elements following middle

It is clear that
σM>((xi,...,xj))⊆(xi,...,xj)

Table 3: Usual ε- and σ-function definitions

From the above algorithm of the general search, it is easy to deduct linear search
in ordered sequence, logarithmic search, and even backtracking.

These are the notion correspondences for the algorithm of linear search in or-
dered sequence:

L:=(xi:i ∈ [e..N]) – all through, e : where we are=1..N+1 (LSO1)
Here e signals the start of the sequence where we are performing
the search. Note: sequence L can end even before we reach its
N element. (If x>y is true.)
L can be identified, and even substituted with the index of the
first element:
L:=L(e) → e (LSO1’)

288 P. Szlávi, G. Törley, L. Zsakó



ε(L):=ε(L(e)):=εF (L(e)):=e – first element (LSO2)
σ(L):=σ(L(e))

σ(L(e)):=(xi:i ∈ [e+1..N]). if xe ≤y (LSO3)
σ(L(e)):=(xi:i ∈ [N+1..N]). if xe >y (LSO4)

(LSO3)&(LSO4)⇒ σ(L(e))⊆(xi:i ∈[e..N]) (LSO5)
‖L‖:=‖L(e)‖
(LSO1)⇒ ‖L(e)‖:=N-e+1 (LSO6)
(LSO6)⇒ ‖L(e)‖>0 ⇐⇒

N≥e (LSO7)

This is the first version of the mechanically generated algorithm (already with-
out references):

e:=1
While N≥e and X(e)6=y do

Case
When X(e)<y then e:=e+1
When X(e)>y then e:=N+1

End Case
End While
Exists:=N≥e
If Exists then Index:=e

We can make the following remarks:

1. According to LSO3, in the first node the following part (’When X(e)<y then
e:=e+1’) would be this:
’When X(e)≥y then e:=e+1’, which is semantically equivalent to the above
due to the function condition.

2. We exit the cycle if ’N<e or X(e)=y’ is true;

N<e ⇐⇒
X(e)>y – we find bigger (⇐ σ definition (LSO4))
or
N+1=e – we have reached the end of the sequence

3. The following is true about the cycle condition:

N≥e and X(e)6=y ⇐⇒
not (X(e)>y or N+1=e) and X(e) 6=y ⇐⇒
X(e)≤y and N+1>e and X(e) 6=y ⇐⇒
N+1>e and X(e)<y ⇐⇒
N≥e and X(e)<y

4. After this change, the conditional statement became useless in the cycle,
because the first condition is trivially true, and the second will never be true.

Cognitive tools in use 289



5. Like this, however, the reason of the exit is not signaled unambiguously by the
’N≥e’ condition (since sequence L is not emptied): the exit path blocking suc-
cessful searches and the exit path blocking meaningless searches are blurred
now. Success, however, is unambiguously marked if ’N≥e and X(e)=y’ con-
ditions are true. Therefore, the modified algorithm is as follows:

e:=1
While N≥e and X(e)<y do

e:=e+1
End While
Exists:=N≥e and X(e)=y
If Exists then Index:=e

6. The algorithm gets even more simplified with the separation of e. The trick
is simply that we exit before the last element, focusing our scrutiny on this
problem:

e:=1
While N>e and X(e)<y do

e:=e+1
End While
Exists:=X(e)=y
If Exists then Index:=e

Note that it also models the operation of program transformation [7, p. 10:
PT14] as a typical program making tool, whose essence is that we modify an
algorithm (a program) with justifiably proper transformation steps, usually for the
purpose of reducing its complexity.

We can reach the well-known algorithm of logarithmic search with the same
logic. In the following, we will only present its start and its end.

These are the notion correspondences for the algorithm of logarithmic search:
L:=(xi:i∈[e..v]) – start and finish; at start:(1..N) (LgS1)
L can be identified, even substituted with the index of its first and
last element:
L:=L(e,v) → (e,v) (LgS1’)
ε(L):=ε(L(e,v)):=εM (L(e,v)):=(e+v) DIV 2 – middle element (LgS2)
σ(L):=σ(L(e,v))

σ(L(e,v)):=σM<(L(e,v)), if xε(L(e,v))>y (LgS3)
σ(L(e,v)):=σM>(L(e,v)), if xε(L(e,v))<y (LgS4)

‖L‖:=‖L(e,v)‖
(LgS1)⇒ ‖L(e,v)‖:=v-e+1 (LgS5)
(LgS5)⇒ ‖L(e,v)‖>0 ⇐⇒

‖L(e,v)‖>0 ⇐⇒
v-e+1>0 ∧ e,v∈ N ⇐⇒
v≥e (LgS6)

The algorithm after the direct generation is as follows:

290 P. Szlávi, G. Törley, L. Zsakó



(e,v):=(1,N)
While v≥e and X((e+v) DIV 2) 6=y do

Case
When X((e+v) DIV 2)>y then (e,v):=(e,((e+v) DIV 2)-1)
When X((e+v) DIV 2)<y then (e,v):=(((e+v) DIV 2)+1,v)

End Case
End While
Exists:=v≥e
If Exists then Index:=(e+v) DIV 2

For the sake of simplicity, we assign k to the index of element (=(e+v) DIV 2)
of ε(L(e,v)), but this separation entails distinct calculation as well. On the other
hand, the ’X(k) 6=y’ condition simplifies the cycle to being two-way. This means we
are left with the “usual” algorithm:

(e,v):=(1,N); k:=(e+v) DIV 2
While v≥e and X(k) 6=y do

If X(k)>y then v:=k-1
else e:=k+1

k:=(e+v) DIV 2
End While
Exists:=v≥e
If Exists then Index:=k

Backtracking can also be deducted from the above algorithm of general search,
but it is somewhat more complicated due to the somewhat more complicated defi-
nition of search domain in the backtracking logic. For details check [5, pp. 8–9].

Note that you can read more in depth about the above aspect of abstraction
on [6, pp. 64–65], where we are analyzing how to build up the programming theses
(like counting, maximum pick, multiple item selection, etc.), which are operated
by the backtracking logic, from the abstract notions listed in Table 1. This points
to another useful consequence of the abstract mindset described in this chapter,
the generalization of search. Obviously, there exist other ways to generalize, for
example based on data structure variation (using matrices [Table 5], lists, sequential
input/output files, sets or graphs, instead of arrays)

3. Lexicality vs. creativity

It must be noted that we rely on a great deal of lexical knowledge while pro-
gramming. During this process, we use languages with small lexicons but great
variability, such as specification languages, algorithmic languages, or programming
languages. Systematic programming regulates coding as well, so in addition to
lexical knowledge, we are dealing with coding rules too. Besides the basic level of
programming, programming theses [5, 6, 8] can also be considered as lexical knowl-
edge, which are topped up by program transformations [7, 8] on the advanced level

Cognitive tools in use 291



Definition Linear search in the matrix

L:=(xe,j :j∈[f..N]) ∪
(xi,j :i∈[e+1..N],j∈[1..M])

L:=L(e,f) → (e,f)
ε(L):=ε(L(e,f)):=(e,f)
σ(L):=σ(L(e,f))

σ((xe,f ,...,xN,M )):=
(xe,f+1,...,xN,M ), if f<M
σ((xe,f ,...,xN,M )):=
(xe+1,1,...,xN,M ), if f=M

‖L(e,f)‖:=(M-e+1)*M-f

(e,f):=(1,1)
While e≤N and not T(X(e,f)) do

if f<M then
f:=f+1

else
e:=e+1; f:=1

End If
End While
Exists:=e≤N
If Exists then Index:=(e,f)

Table 5: Definitions and algorithm of linear search for matrix with
N×M dimension

of programming. The question arises then: are we not contributing to the negative
state of skills development in students, as revealed in the PISA reports [9, 10], by
forcing programming? “Too much lexicality; where is creativity??”

It is evident that the goal of coding rules is exactly to make it easier to learn a
given programming language. They concentrate the knowledge, thus reducing the
time necessary to start the coding process. But what about the rest of the lexical
knowledge?

Let us quote from psychologist-philosopher William James [11, p. 122]:
“The great thing, then, in all education, is to make our nervous system our ally

instead of our enemy. It is to fund and capitalize our acquisitions, and live at ease
upon the interest of the fund. For this we must make automatic and habitual, as
early as possible, as many useful actions as we can, and guard against the growing
into ways that are likely to be disadvantageous to us, as we should guard against the
plague. The more of the details of our daily life we can hand over to the effortless
custody of automatism, the more our higher powers of mind will be set free for their
own proper work.”

If we translate James’s thoughts to programming, we can conclude that by
making students “memorize” the lexical knowledge connected to programming we
are giving them tools with which they can start to focus their creativity on solv-
ing real problems, not wasting their energy on tiny algorithmic details. In this
way, creativity can be utilized on a higher level, on the level of problem-solving.
Of course, if we rigidly stick to our thinking patterns, that can pose a problem.
Elemér Lábos [12, p. 61] describes this phenomenon in the following way:

“Attitude is an especially interesting internal mechanism, as it points out two
processes that play an important role in thinking. When we think, our mind ac-
tivates programs that are there ready to solve repeated problems, which accelerates
problem-solving, yet at the same time it blocks the activation of other programs.”

292 P. Szlávi, G. Törley, L. Zsakó



4. Summary

We have examined two main issues in this article: 1) how abstraction operates as a
cognitive tool, and 2) how lexical knowledge of linguistic nature can serve to help
problem-solving.

We can state that both of them make 1) problem-solving thinking more efficient,
and 2) the final solution more complex. Nevertheless, it is clear that the application
of these tools can pose challenges too: it is fair to admit that they require more
mental effort, schematic thinking is not enough here, and certain lexical knowledge
is also necessary, along with their routine-like application and some self-control to
keep ourselves from the attractive yet misleading solutions that keep popping up.

References

[1] Szlávi, P., Zsakó, L., Törley, G., The Thinking Toolkit of Programming, Pro-
ceedings of XXIX. DidMatTech 2016, “New methods and technologies in education
and practice” Conference (2016), 55–62.
Available at https://edit.elte.hu/xmlui/handle/10831/32278 (last retrieved:
11/06/2016)

[2] Szlávi, P., Zsakó, L., A programozás gondolkodási eszköztára – Algoritmikus
absztrakció, dekompozíció-szuperpozíció, InfoDidact 2016, Informatika Szakmódsz-
ertani Konferencia, (2016),
Available at http://people.inf.elte.hu/szlavi/InfoDidact16/Manuscripts/
SzPZsL.pdf (last retrieved: 12/03/2016)

[3] Szlávi, P., A programkészítés didaktikája, PhD dissertation, (2004),
Available at http://www.inf.elte.hu/karunkrol/szolgaltatasok/konyvtar/
Lists/Doktori%20disszertcik%20adatbzisa/Attachments/32/Szlavi_Peter_
Ertekezes.pdf (last retrieved: 12/03/2016)

[4] Szlávi, P., Programok, programspecifikációk, Informatika a Felsőoktatásban’99,
(1999), 576–582.
Available at http://people.inf.elte.hu/szlavi/ProgModsz/Progspec.pdf (last
retrieved: 11/06/2016)

[5] Szlávi, P., Programozási tételek – Összefoglaló, Manuscript, (2001)
Available at http://people.inf.elte.hu/szlavi/ProgModsz/Prtetel.pdf (last re-
trieved: 11/06/2016)

[6] Szlávi, P., Zsakó, L., Módszeres programozás – Programozási tételek, TTK In-
formatikai Tanszékcsoport, (2004),

[7] Szlávi, P., Programozási tételek egymásra építése – Programtranszformációk,
Manuscript, (2000)
Available at http://people.inf.elte.hu/szlavi/ProgModsz/Progtran.pdf (last
retrieved: 01/06/2017)

[8] Harangozó, É., Szlávi, P., Zsakó, L., Joining Programming Theorems a
Practical Approach to Program Building, Annales Universitatis Scientiarum Bu-
dapestinensis. Sectio Computatorica, (1998), 155–172.

Cognitive tools in use 293



Available at http://ac.inf.elte.hu/Vol_017_1998/155.pdf (last retrieved:
11/06/2016)

[9] Csapó, B. et al., Az iskolai teljesítmények alakulása Magyarországon nemzetközi
összehasonlításban, Kolosi Tamás és Tóth István György (edit.): Társadalmi Riport
2014. TÁRKI, (2014), 110–136.
Available at http://www.tarki.hu/adatbank-h/kutjel/pdf/b327.pdf (last re-
trieved: 01/06/2017)

[10] Palkovics, A lexikális tudás- és a kompetencia fejlesztése egyaránt fontos, Magyar
Hírlap.hu, (2016) Available at http://magyarhirlap.hu/cikk/73625/Palkovics_
A_lexikalis_tudas_es_a_kompetencia_fejlesztese_egyarant_fontos (last re-
trieved: 01/06/2017)

[11] James, W., The Principles of Psychology, Vol. 1 Henry Holt and Co.,
New York, (1910) Available at https://ia800203.us.archive.org/12/items/
theprinciplesofp01jameuoft/theprinciplesofp01jameuoft.pdf (last retrieved:
01/13/2017)

[12] Lábos, E., Természetes és mesterséges értelem, Magvető Kiadó, (1979)

294 P. Szlávi, G. Törley, L. Zsakó


